F\\

Adobe

Adobe PageMaker * 6.5

Software Development Kit

for Macintosh and Windows

Revised: 11 July 1996

Adobe PageMaker 6.5 Software Development Kit

Copyright © 1991, 1993, 1995 by Adobe Systems Incorporated. All rights
reserved.

NOTICE: All information contained herein is the property of Adobe Systems
Incorporated. Many of the intellectual and technical concepts contained
herein are proprietary to Adobe, are protected as trade secrets, and are
made available only to Adobe licensees for their internal use.

No part of this publication (whether in hardcopy or electronic form) may be
reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any information referred to herein is
furnished under license with Adobe and may only be used, copied,
transmitted, stored, or printed in accordance with the terms of such license,
or in the accompanying Material Release Form from Adobe.

Adobe, the Adobe logo, PageMaker, Persuasion, Adobe Type Manager, and
PostScript are trademarks of Adobe Systems Incorporated. All references to
PostScript on the screen or in this guide are references either to the
PostScript interpreter or to the PostScript language.

Apple, LaserWriter, Macintosh, and Power Macintosh are registered
trademarks and System 7 and TrueType are trademarks of Apple Computer,
Inc. Photo CD is a trademark and KODAK is a registered trademark of
Eastman Kodak Company. Microsoft, Visual Basic, and Windows are
registered trademarks and Visual C++ and Windows NT are trademarks of
Microsoft Corp. PANTONE® is a registered trademark of Pantone, Inc.
*Pantone, Inc.’s check-standard trademark for color. PANTONE Color
Computer Graphics © Pantone, Inc., 1986, 1988. Pantone, Inc. is the
copyright owner of PANTONE Color Computer Graphics and Software, which
are licensed to Adobe Systems Incorporated to distribute for use only in
combination with Adobe Systems Incorporated software. PANTONE Color
Computer Graphics and Software shall not be copied onto another diskette
or into memory unless as part of the execution of Adobe PageMaker. All
other trademarks or registered trademarks are the property of their
respective owners.

This publication and the information herein is furnished AS IS, is subject to
change without notice, and should not be construed as a commitment by
Adobe Systems Incorporated. Adobe Systems Incorporated assumes no
responsibility or liability for any errors or inaccuracies, makes no warranty of
any kind (express, implied, or statutory) with respect to this publication, and
expressly disclaims any and all warranties of merchantability, fitness for
particular purposes, and noninfringement of third party rights.

Most of the material for this document was derived from work by xxx, xxx,
xxX, and xxx. It was then compiled, edited, and reformatted into its current
form by Brian Andrews.

Version History

1 July 1996 Brian Andrews Version 6.5 — Preliminary release

11 July 1996 Brian Andrews Version 6.5 - Final 6.5 release

Adobe PageMaker Software Development Kit 2

1 PageMaker Plug-Ins Overview 8
What is a plug-in? 9
What can plug-ins do? 9
What plug-ins can't do 9
Who will use plug-ins? 9
What you need to develop a plug-in 10

* Macintosh developers need 10

e Windows developers need 10
Documentation, testing, distributing, and supporting 10
How do plug-ins interact with PageMaker? 11
How complex is the PageMaker plug-ins mechanism? 12
No knowledge of the PageMaker internals needed 12
PageMaker-based commands 12
PC or Mac: The language is the same 12
Command and query language 13
Two formats: text and binary 13
Parameters 13
Coordinates 13
Multiple commands but single queries 13
Types of plug-ins 15
Loadable plug-ins 15
® Menu plug-ins 15
e Function Libraries 15

Stand-alone plug-ins 15
e DDE 16
* Macintosh System 7 Apple Events 16

Where to go next 17

2 Writing Loadable Plug-Ins 18

Structure of a plug-in 19
Windows DLL 19
Macintosh shared library 19
Flow of control 20
Data flow 20
How PageMaker recognizes a plug-in 21
Macintosh 21
Windows 21
Registration 22
PC: Creating the registration resource 22

Macintosh: Creating the registration resource with ResEdit 23
* To use this template 23

Macintosh: Assigning resource type 24

Contents

Adobe PageMaker Software Development Kit

Contents

Single entry point: main 25
Pascal calling convention 25
General guidelines 26
Dialog boxes or windows 26

Error and status codes 26
e Errors from PageMaker while executing commands and queries 26

e Returning errors to PageMaker 26
Global variables 27

Memory management 27
e Binary versus text format for commands and queries 27
e Palettes and windows 27
* How a user can maximize memory 28
e Cleanup 28
e Adobe Memory Manager 28

Writing portable plug-ins 29
Portable code 29
Motorola and Intel processor differences 29
Macintosh development specifics 31
FAT binary: One executable, two platforms 31
Macintosh initialization calls 31
Do not use the C routine atexit() 31
Debugging 32
Editing the ‘vers’ resource 32
Windows development specifics 33
Microsoft Windows restrictions 33
PC module-definition file 33
Project files 34
Sample plug-in routine 35

3 Required Routines for Loadable Plug-Ins 36

Data flow 37
Allocated by PageMaker 37

Parameter block structure 37
* Type definition for the parameter block 37

Inline macros 39

Loading 40

Invoking 42

Unloading 44

Cleaning up 45

Shutting down 47

Sending commands to PageMaker 49
Sending queries to PageMaker 51

Adobe PageMaker Software Development Kit 4

Contents

4 Memory-Manager Routines for Loadable Plug-Ins 59

Why use these routines? 59
Where to find the routines 59
Adobe Memory-Manager routines 60
MMAIlloc 61
MMFree 63
MMGetPointer 64
MMLock 65
MMResizeHandle 66
MMUnlock 67

5 Macros 68

Macro locations 69

Finding descriptions 69
LPGetHandle 70
LPGetLong 71
short LPGetShort(&v,pSrc) 72
LPGetString 73
LPPutHandle 74
LPPutLong 75
LPPutShort 76
LPPutString 77
PBBinCommand 78
PBBinCommandByShortValue 79
PBBinCommandByLongValue 80
PBBinQuery 81
PBBinQueryWithParms 82
PBClearReplyBlock 83
PBClearRequestBlock 84
PBGetPluginData 85
PBGetID 86
PBGetOpCode 87
PBGetReplyData 88
PBSetErrMessage 89
PBSetPluginData 90
PBSetOpCode 91
PBSetReplyBlock 92
PBSetReplyUnits 93
PBSetRequestBlock 95
PBSetRequestUnits 96
PBTextCommand 98
PBTextQuery 100

Adobe PageMaker Software Development Kit 5

Contents

6 User Interface Design Guidelines 102

General development tips 103
Simplify the plug-ins menu 103
Create consistent icons 103
Follow existing standards and usage 103
Designing dialog boxes 104
Common dialog boxes 104
PageMaker dialog box guidelines 104
About pixels 104
Creating and placing buttons 106
Radio buttons, check boxes, and edit boxes 107
Option placement guidelines 108
Error messages and alerts 109
Guidelines for making your product easy to localize 110
Localizing Windows plug-ins 110
Organizing your resources 110
Content of resources 110
Providing for translated text 111
Special considerations 111

7 Writing Stand-Alone Plug-ins: Apple Events and DDE 112

About stand-alone plug-ins 113
Using Apple Events to communicate with PageMaker 114
Addressing events to PageMaker 114
* Required constants 114
e Sample code 114
Do script and Evaluate Expression Apple Events 114
e Description 114
* Sending commands and queries 115
* PageMaker’s reply to a query 115
HyperCard or SuperCard example 115
e Stack or project script 116
e Button 116
e Text field 117

Using DDE to communicate with PageMaker 118
Using DDE messages 118
Sending commands and queries to PageMaker 118
Receiving replies from PageMaker 118

Example: Calling routines in DDE Manager Library 119
* The callback routine for DDEML 119
e Initiating a DDE conversation 119
e Sending a command to PageMaker 120
¢ Sending a query to PageMaker 120
¢ Ending the conversation 121

Example: Sending DDE messages 121

Adobe PageMaker Software Development Kit 6

Contents

e Declarations 121

* Subroutines 121

e Text field 122

e Command button 122

8 Using Commands and Queries 124

Command and query language 125
Text versus binary format: to parse or not to parse 125
Query replies: if you want text, you gotta ask 125

¢ Loadable plug-ins 125
e Stand-alone plug-ins 125
Binary format 125
e Add PM_ to command and query names 125
e Even byte boundaries 126
e String data 126
* Routines to put and get data (loadable plug-ins) 126

64K query return limit for Windows 128
Optional parameters not optional 128
Deleting reply buffers 128
Commands, queries, and parameters 129
Multiple commands for single menu commands 129
Command and query syntax 129

Commands, defaults, and preferences 129
* No publication is open 130
* Publication is open and no object is selected 130
* Publication is open and an object (text block or graphic) is selected 130
e Publication is open and text is highlighted with the text tool 130
¢ Publication is open and the insertion point is within a text block 130

Deciphering PageMaker’s replies to queries 130
Command and query language rules (text format only) 131
Specifying the measurement system 133

Binary format uses twips 133

Text format 133

e Specifying the measurement system for individual parameters 133

* Changing the default measurement system 134
Setting the zero point and specifying coordinates 135
Setting the ruler’s zero point 135

Using numeric coordinates 135

¢ Vertical coordinates do not use separate measurement system 136
Specifying locations by page elements (text format only) 136
Using the command and query reference 138
Anatomy of the command and query descriptions 138
Parameter types 139

Adobe PageMaker Software Development Kit 7

PageMaker Plug-Ins
Overview

Welcome to the PageMaker Plug-ins Software Development Kit. This kit
provides documentation and sample code to help you write plug-ins for
PageMaker 6.0.

The PageMaker plug-ins mechanism enables third-party developers and users
to add to the capabilities of Adobe PageMaker. Using a command and query
language to communicate with PageMaker, plug-ins can perform any action
a user might do with the keyboard or mouse, extract information about the
content and structure of publications, and more.

This chapter provides an overview of PageMaker plug-ins. It briefly describes

the two types of plug-ins, what plug-ins can and cannot do, and how plug-
ins interact with PageMaker.

Adobe PageMaker Software Development Kit 8

PageMaker Plug-Ins Overview

What is a plug-in?

The plug-ins mechanism lets loadable modules or external applications
control PageMaker and automate and extend PageMaker’s existing
capabilities.

Plug-ins can take many forms. The two types of plug-ins are:

e Loadable plug-ins, which PageMaker loads dynamically and which
appear on the PageMaker Plug-ins submenu.

e Stand-alone plug-ins, which communicate with PageMaker using either
Apple Events or Windows Dynamic Data Exchange-DDE.

What can plug-ins do?
The range of possible plug-ins is vast. Plug-ins can:

e Provide new features, add special functions, or enhance existing
functionality, such as equation editing, generating running headers and
footers, or aligning columns.

e Automate common tasks, such as creating drop caps or converting typed
fractions into typographer’s fractions.

e Streamline access to PageMaker’s existing functions, such as adding a
palette or toolbar of certain PageMaker operations.

e Automate the production of boilerplate publications, such as updating a
monthly report or converting existing publications to a new format.

e Improve the transfer of information between PageMaker and other
applications, such as automatically extracting and formatting
information from a database into a PageMaker publication, or creating
an Adobe Persuasion presentation from a report.

e Organize and manage publications, linked files, and fonts, such as
copying and compressing all files and fonts needed by a publication onto
a single disk.

What plug-ins can’t do

While the plug-ins mechanism offers more than simple remote control of
PageMaker, it does not provide a way to make PageMaker do something it
doesn’t already do. You cannot create new tools for the toolbox or new
kinds of page elements; nor can you change built-in components, such as the
PageMaker composition algorithm, line and fill styles, or the way PageMaker
draws to the screen and the printer. However, using existing PageMaker
commands and the information gathered with queries, you can provide
valuable, capability enhancing plug-ins for PageMaker users.

Who will use plug-ins?

Plug-ins are attractive to all sectors of the desk-top publishing market—both
Macintosh and PC, high- and low-end. Numerous plug-ins are appropriate
for a broad range of users, while others fulfill specific market needs in such
areas as graphic arts, business communication, technical and scientific
research, academia, training, multi-user environments, and, of course, the
various types of publishing (magazine, newspaper, database, scientific,
government, and catalog, among others).

Adobe PageMaker Software Development Kit 9

PageMaker Plug-Ins Overview

What you need to develop a plug-in

The requirements vary depending on the type of plug-in you develop.
However, in all cases, you need a solid understanding of how to use
PageMaker and should be familiar with the C language.

Macintosh developers need

e Adobe PageMaker 6.0 for the Macintosh and Power Macintosh.
e Macintosh System 7.1 (or later).

e Metrowerks CodeWarrior (version CW?7 or later).

Windows developers need

e Adobe PageMaker 6.0 for Windows
e Microsoft Windows 95

e Microsoft Visual C++, version 2.0 or later, and the SDK Guide for
Microsoft Windows and Windows NT

Documentation, testing, distributing, and supporting

Each developer is responsible for documenting, testing, distributing, and
supporting their plug-ins. Adobe does not have a program for providing
these services.

Adobe PageMaker Software Development Kit 10

PageMaker Plug-Ins Overview

How do plug-ins interact with PageMaker?

All plug-ins use the command and query language to control PageMaker. As
indicated by the following diagram, a plug-in communicates with
PageMaker through the plug-ins interface manager. Regardless of the type
of plug-in—be it a separate application (using Dynamic Data Exchange or
Apple Events) or a loadable module—all communication occurs through this
manager.

Mouse or :
keyboard Plug-in
' PageMaker _ ¢ .
| Plug-in !
! interface |[€——— !
! manager I
: . | . :
! Binary Text Binary :
; commands commands/ queries !
| queries Bi ;
. inary |
: ' * reply !
! Event Command and . I
I . ext |
! dispatcher guery parser reply] ;
: Query ;
: ¢ ¢ ¢ v respcl)nses |
E Action Info :
| routines routines ;
Publication

—> file

The interface manager directs commands and queries to either the parser, or
if in the binary format (more about this later), directly to the appropriate
action or information routines. As shown, the action routines are the same
routines PageMaker uses when you use the mouse or keyboard.

Binary query responses are sent back to the interface manager, which in turn
sends the responses to the plug-in. Text query responses are sent through
the parser before being sent to the interface manager.

Adobe PageMaker Software Development Kit 11

PageMaker Plug-Ins Overview

How complex is the PageMaker plug-ins mechanism?

No knowledge of the PageMaker internals needed

You do not need to know anything about the PageMaker file format,
subroutine libraries, or memory data structures to develop a plug-in.
Because commands and queries are sent directly to PageMaker’s existing
action and information routines, PageMaker, not the plug-in, is responsible
for the integrity of publications. In this way, you can focus your efforts on
developing and testing your plug-in, not on preventing negative side effects
your plug-in might have on a PageMaker publication.

PageMaker-based commands

The command and query language is straightforward and simple, based on
the actual menu commands or mouse actions (open, paste, getfont, for
example). The parameters and coordinates that accompany a command or
query mimic the way a user works on a publication (column 1 top, guide 1,
for example).

PC or Mac: The language is the same

With few exceptions, the command and query language is identical in the
Windows and Macintosh environments, simplifying the development of plug-
ins aimed for both platforms.

Adobe PageMaker Software Development Kit 12

PageMaker Plug-Ins Overview

Command and query language

The command and query language is the key to the plug-ins interface:

Commands : Invoke PageMaker menu commands and perform most
user actions (for example, drawing, moving, or resizing
objects; setting guides; and inserting text).

Queries: Access information in PageMaker publications (for
example, details about individual elements and their
placement, the number of pages, the page size, the fonts
used, and so on).

Two formats: text and binary

You can use two formats for commands or queries: ASCII text or binary (non-
ASCII bindings). As shown in the previous diagram, the interface manager
sends commands and queries in the text format through the parser, which in
turn converts them into the binary format. Therefore, commands and
queries in the binary format require less memory to process, and execute
faster than the equivalent commands or queries in the text format.

Parameters

Many menu commands access dialog boxes, which solicit additional
information from the user. Where appropriate, plug-ins commands require
you to include this information in parameters and thereby bypass the dialog
box. For example, to open the file income.pm5, the command is open
“income.pm5”.

To avoid long parameter lists for dialog boxes that contain numerous entries
and choices, certain commands have been broken into several commands.
For example, four script-language commands cover the File > Document
Setup menu command: PageMargins, PageNumbers, PageOptions, and
PageSize.

Defaults: You must supply all parameters with a command unless
specifically stated otherwise. The parser does not accept a
command or query without the required parameters.

Coordinates

PageMaker accepts various types of page coordinates. You can specify a
location on a page using precise numeric values, or you can specify a
location in terms of column and ruler guides or placed elements (such as the
bottom of a text block or the edge of a graphic)—the way a user works and
thinks. For example, to place a logo at the intersection of the left edge of a
column and the third horizontal guide, you could specify the x and y
coordinates as column 2 left, guide 3. Or, to begin a story immediately
following the last-drawn (top- or front most) object, you could specify the
coordinates last left, last bottom.

Multiple commands but single queries

Multiple
commands: A plug-in may send multiple commands in the text format
to PageMaker by separating each with a semicolon (;),
carriage return, or carriage return/line feed pair (ASCII
codes OA or 0D).

Adobe PageMaker Software Development Kit 13

PageMaker Plug-Ins Overview

Using the binary format, only one command or query may
be sent at a time. However, the SDK includes macros to
give these binary commands and queries a direct function-
call feel.

Single queries: You should send only one query at a time. Although
PageMaker accepts multiple queries, you'll receive a reply
for the last query only, because each response overwrites
the previous response.

Adobe PageMaker Software Development Kit 14

PageMaker Plug-Ins Overview

Types of plug-ins

Plug-ins fall into two categories:
e Loadable plug-ins

e Stand-alone plug-ins

Loadable plug-ins
PageMaker automatically loads two types of plug-ins:

Menu plug-ins: Appear on PageMaker’s plug-ins submenu (a hierarchical
menu on the Utilities menu).

Function libraries: Are invisible to the user but provide functions and utilities
for other plug-ins.

You write loadable plug-ins in C, and compile and link the source files into a
68K-Windows DLL, a 32-bit Macintosh code resource, or a Power Macintosh
shared library. Although you write these types of plug-ins in C, the plug-in
uses the command and query language to communicate with PageMaker.

With few exceptions, the command and query language is identical in
PageMaker for Windows and for the Macintosh. Therefore, you can develop
a plug-in that can be marketed in both environments. By avoiding
environment-specific language and compiler features and by conditionally
isolating platform-dependent code, your plug-in source code can have a fair
degree of portability.

Menu plug-ins
PageMaker lists menu plug-ins on the PageMaker Plug-ins submenu. A menu

plug-in appears to users to be part of PageMaker and is invoked when a user
selects it from the plug-ins submenu.

Utilities

PageMaker Plug-ins »
Acquire Image...
Add cont'd line...

Function Libraries

PageMaker automatically loads plug-in function libraries and makes them

available to other plug-ins, although the libraries remain hidden from the

user. Function libraries can provide a variety of utilities, which can be used
by any other plug-in.

Stand-alone plug-ins

Other applications can access PageMaker via DDE or Apple Events. Using the
same language as loadable plug-ins, an application can send PageMaker
commands and request information about a publication.

There are many potential uses for this kind of remote access of PageMaker,
and using DDE or Apple Events, a stand-alone application can integrate the
functionality of multiple applications. For example, you can write a stand-
alone application that uses Apple events to open a database program and
extract information, transfer the information to a graphics program, format
the data into a chart, and then open PageMaker and place the chart into a

Adobe PageMaker Software Development Kit 15

PageMaker Plug-Ins Overview

publication. Or an application could automatically generate personalized
letters from a database of addresses.

DDE

In Windows, an application initiates contact with PageMaker using DDE
messages. In DDE parlance, PageMaker is the server and the application is
the client. The DDE messages EXECUTE, REQUEST, and DATA establish
contact between the applications and transmit the commands, queries, and
responses. The application sends commands and parameters in EXECUTE
messages. REQUEST messages carry queries, and PageMaker replies to a
REQUEST using a DATA message.

Macintosh System 7 Apple Events

The Macintosh protocol using Apple Events is very similar to the protocol
used on the PC. Rather than use a separate Apple Event ID for each
command and query, a plug-in uses one of two Apple Event IDs to deliver
commands or queries to PageMaker: DOSC and EVAL. DOSC can deliver
multiple ASCIl commands.

In addition, PageMaker supports the four “required” Apple Events: Open
Application, Open File, Print, and Quit.

Adobe PageMaker Software Development Kit 16

PageMaker Plug-Ins Overview

Where to go next

Use the following table to determine which chapters to refer to next:

To Write Refer To

Loadable plug-ins Chapter 2Writing Loadable Plug-Ins

Chapter 3Required Routines for Loadable Plug-Ins
Chapter 4Memory-Manager Routines

Chapter 5Macros

Chapter 6User Interface Design Guidelines
Chapter 8Using Commands and Queries

Chapter 9PageMaker Commands

Chapter 10PageMaker Queries

Stand-alone plug-ins Chapter 7Writing Stand-Alone Plug-Ins: Apple Events and DDE
Chapter 8Using Commands and Queries

Chapter 9PageMaker Commands

Chapter 10PageMaker Queries

Adobe PageMaker Software Development Kit 17

Writing Loadable Plug-Ins

This chapter discusses how to write loadable plug-ins. It describes the
structure of a plug-in, details the flow of control between a plug-in and
PageMaker, and presents implementation suggestions for writing both
platform-specific plug-ins and portable plug-ins. What is a plug-in?

The plug-ins mechanism lets loadable modules or external applications

control PageMaker and automate and extend PageMaker’s existing
capabilities.

Adobe PageMaker Software Development Kit 18

Writing Loadable Plug-Ins

Structure of a plug-in

You write loadable plug-ins in C or C++ and compile and link them into
either a 32-bit Windows DLL or a Macintosh fat-binary shared library. A
plug-in must contain:

e A main routine, which serves as the single entry point for all calls from
PageMaker to the plug-in.

e Registration and related string resources, which PageMaker reads at
startup and uses to build the PageMaker Plug-ins submenu when first
displayed.

e Five routines with operations for loading, invoking, unloading, cleanup,
and shutdown (Chapter 3 describes these operations in more detail).

e Code for your plug-in.

Windows DLL

The illustration below shows the basic structure of a plug-in DLL.

PageMaker calls to
load, invoke, and —]
unload the plug-in

Loading

Code (main is entry point)

Invoking

|_| Plug-in code |

Data

startup to determine
the menu name and
identifier of plug-in, as -
well as in which view Dialog resource
it is active

PageMaker reads at —I: ADNI resource

String resource

Macintosh shared library
A fat-binary shared library contains the code needed to run a plug-in in both
PageMaker for the Macintosh and PageMaker for the Power Macintosh. As
shown in the illustration below, the 68K code is in the RAG2 resource in the
resource fork and the Power Macintosh code is in a code fragment container
in the data fork.
—Resource fork Data fork

Power Macintosh code
PageMaker calls to RAGL

fragment container
load, invoke, and | Al
unload the plug-in Code:main ()

680x0 code _| | RAG2
PageMaker reads at

Code: 0 startup to determine
STR# _L| the menu name and

| identifier of plug-in,

Code: n as well as in which

view it is active

The main routine contains all the required operations. It determines the
platform and jumps to the appropriate plug-in code.

Data fork: Power Macintosh plug-in code |

RAG2: 680x0 plug-in code |

Adobe PageMaker Software Development Kit 19

Writing Loadable Plug-Ins

Flow of control

The following diagrams show the normal sequence of calls from PageMaker
at startup, when a plug-in is invoked, when PageMaker is low on memory,
and when PageMaker closes. Remember, main dispatches calls from
PageMaker to the requested routine. The operation codes PageMaker sends
during invocation, when low on memory, and prior to shutdown are
included in the diagrams.

Startup Invocation

| User starts PageMaker | User selects plug-in (or
| another plug-in requests it)

PageMaker reads ADNIresource
for registration information - .
| kAdnLoad: Plug-in allocates private data,

defines and sets global variables according
PageMaker builds PageMaker to platform, performs any first-use initiation,

Plug-ins submenu first time resource loading, etc.
user opens it

kAdninvoke: Plug-in runs its
routines

kAdnUnload: Plug-in performs any
cleanup (unloads resources,
updates global data, etc.)

Low memory Shutdown

User selects “Quit” from

PageMaker is critical ly
PageMaker’s File menu

low on memory

Yes PageMaker:

..u_,.,,!w
been invoked?

PageMaker:
IS plug-m st
loaded?

No Yes

) kAdnUnload: Plug-in performs an
kAdnCleanup: Plug-in frees cleanup (unIo%s Pesources, y

a;on;g?glen}ﬁg?o% 25 updates global data, etc)

resources, saves privae |
datato diskand
deallocates memory, etc.) |

kAdnShutdown: Plug-in prepares to be
closed (frees all allocated memory,
saves specia settings,etc.)

PageMaker unloads
plugin and shuts
down

PageMaker:
e |

Yes No

emory needed

kAdnShutdown: Plu?—in prepar esto be Paquakercontinueﬂ
closed (frees all allocatd memory,
saves special settings, etc.)

Data flow

A plug-in transfers data to or from PageMaker at various times: at startup,
when invoked, and when sending commands or receiving query responses.
To simplify development and reduce parameter traffic on the stack, a
common parameter block structure is used for all data transfer. PageMaker
initializes and allocates the parameter block and passes a pointer to the
block every time PageMaker contacts the plug-in. During certain types of
transfers, some fields may be unused or optional, while others may contain
data or pointers to other data structures.

The parameter block and the parameters used in each transfer are described
in detail in Chapter 3.

Adobe PageMaker Software Development Kit 20

Writing Loadable Plug-Ins

How PageMaker recognizes a plug-in

For PageMaker to recognize a loadable plug-in, the plug-in file must follow
the guidelines noted below.

Macintosh
PageMaker for the Macintosh requires that a plug-in:

Be a shared library with 680x0 code in the resource fork and with Power
Macintosh code in the data fork.

Have the filename extension .add (e.g., Plug_in.add).
Be in the Plug-ins folder in this location:
HD:PageMaker 6.0:RSRC:Plugins

where HD is the drive on which you installed PageMaker and its files. Do
not move the Plug-ins folder from this location.

Have the main routine in a segment that has a RAG1 resource type.
Have the main routine declared with the Pascal calling convention.

Have required registration information in the ADNI resource (see
“Registration,” which follows).

Windows
PageMaker for Windows requires that a plug-in:

Be a DLL.

Have the filename extension .add (e.g., Plug_in.add).
Be in the Plug-ins folder in this location:
C:\PM6\rsrc\<language>\plugins

where C: is the drive on which you installed PageMaker and its files. Do
not move the Plug-ins folder from this location.

Have the main routine declared with the Pascal calling convention and
be exported (either explicitly with the _export keyword or in the module
definition file).

Have required registration information in the ADNI resource (see
“Registration,” which follows).

Adobe PageMaker Software Development Kit 21

Writing Loadable Plug-Ins

Registration

Registration information is stored in the ADNI resource. PageMaker reads
the ADNI resource of each plug-in at start-up. Briefly, PageMaker needs to
know:

e The name that should appear in the PageMaker Plug-ins submenu
e The plug-ininternal ID

e Whether the plug-in should appear in the PageMaker Plug-ins submenu
(a plug-in can be a library of functions used by other plug-ins and not
appear in the menu)

e In what state the plug-in is active: in layout view, in story editor, and
when no publications are open

PC: Creating the registration resource

The file, frame.rc, contains the definitions, declarations, and structures you
need to create the ADNI resource. When PageMaker is started, it reads this
data to register the plug-in.

Note: When you open FRAME.RC in the MS Visual C++ Integrated
Development Environment, change the Open As option in the Open dialog
box from Auto to Text. This allows you to edit the registration resource
more easily. Otherwise, it is translated into hex.

Example:

*frame.rc - Plug-in programinitialization resource

*

**/

/1 Codes for plug-in resources:
#define R _REG NFO 101
#define ADNI 301

/1 Declaration of the RI _REGQ NFO ADNI resource.
Rl _REG NFO ADNI MOVEABLE //101 301

/'l Header:
BEGA N
oL /'l reserved (LONG

0x0200 // Interface version, nust be 2.0 for PM 6 (WORD)
1 /1 Num of plug-ins in DLL, we recomend 1 per DLL(SHORT)

/1 Definition of plug-in nunber 1:

1L /1 String id# for menu name (DWORD)

Ox1DL // Mask: does plug-in appear in nmenu and in what state?
/1 layout, story editor, when no publications are open
/1 0x00 for don't appear in subnenu
/1 0x01 (plus any val ue bel ow) for show on subnenu
/1 0x04 for active on subnmenu in |ayout view
/1 0x08 for active on submenu in story editor

/1 0x10 for active on subnenu when no publications are open

Adobe PageMaker Software Development Kit 22

Writing Loadable Plug-Ins

/1 Ox1DL to appear in nmenu in all states

0x0203 // Plug-in version, for exanple 2.3 (WORD)

0 /'l reserved (WORD)
1L /1l plug-in nunber (first plug-in in DLL is 1) (LONG
oL /'l reserved (LONG

/1 Define any other plug-ins in sane DLL here (not reconmended)

END

/1l For each plug-in in DLL, include a string resource for its menu name
/1l The nunbers of the string resource should correspond

/'l with the plug-in string id# nunbers in the ADNI resource above

STRI NGTABLE

BEG N

1, “Plug-in Franework...”

/1 1f you have nore than one plug-in in DLL (not reconmmended),

/] add nmore nunbers and nanes here

END

Macintosh: Creating the registration resource with ResEdit

The ResEdit template, ADNI Template.rsrc, simplifies the creation of the
ADNI resource.

EC1=———— ADNI ID = 128 from FRAME.ADD
(7]
It face
Uersion
Hum Plug-ins 1
17 *kkkk
Index
Reserved Bit @0 (S]]
Reserved Bit @0 (S]]
Reserved Bit @0 (S]]
Ho Pub Open @0 o1
Story Editor @0 (S]]
Layout View @0 (S]]
Reserved Bit @0 (S]]
Appear In o w1
Menu
Plug-in f01o0
Uersion
27 REEAE ||
k4
&

To use this template

Start ResEdit (version 2.1 or later) and open ADNI Template.rsrc.

Copy the TMPL record.

Open the ResEdit Preferences file (located in System Folder:Preferences).
Paste the TMPL record into the ResEdit Preferences file.

Close both files.

Open the plug-in resource file.

N oo o A WN =

Choose Create New Resource from the Resource menu and select ADNI in
the Select New Type dialog box.

8 Enter $0200 for the interface version.

Adobe PageMaker Software Development Kit 23

Writing Loadable Plug-Ins

9 Select "1)*****” and choose Insert New Fields from the Resource menu.
10 Fill in the fields as described below:

Information

Description

Menu Name Index

The index number of the plug-in menu name as found in the string
resource. You store the menu name in an indexed string resource
(STR#).

No Pub Open

Whether or not the plug-in is active when no publications are open in
PageMaker: 1 for active, 0 for disabled.

Story Editor

Whether or not the plug-in is active in story editor: 1 for active, 0 for
disabled.

Layout View

Whether or not the plug-in is active in layout view of PageMaker: 1 for
active, 0 for disabled.

Appear in Menu

Whether or not the plug-in appears in the PageMaker plug-ins
submenu: 1 to appear in menu, 0 to not display in menu.

Plug-in Version

The version and revision number of the plug-in. Do not include a
decimal point; PageMaker assumes a decimal point separates the
numbers. For example, enter $0101 for version 1.01. (PageMaker lists all
the installed plug-ins and their version numbers when you hold down
either the Command or Control key while selecting “About
PageMaker” from the Apple menu.)

Plug-in ID

The identifier PageMaker should use when calling the plug-in (e.g., for
invocation or shutdown). The plug-in assigns the ID number.

Note: The IDs of ADNI and STR# must match.

Macintosh: Assigning resource type

The resource type of a Macintosh plug-in should be RAG1. Only the segment
containing main should have this resource type. We recommend that the
680x0 code be in RAG2.

Adobe PageMaker Software Development Kit 24

Writing Loadable Plug-Ins

Single entry point: main

All calls from PageMaker to your plug-in go through the main() entry point.
Typically, your code should dispatch the call based on the opcode field,
which contains one of five values: kPMLoad, kPMInvoke, kPMUnload,
kPMCleanup, or kPMShutdown. These opcodes are discussed in more detail
in Chapter 3.

For Macintosh plug-ins, the main() routine must be 680x0 code in a RAG1
resource, regardless of whether PageMaker is running on a 680x0 or Power
Macintosh system.

The sample code resource Main.RAG1.rsrc in the RAG1 Main folder provides
a standard mechanism for handling both 680x0 and Power Macintosh native
code execution. It loads either the RAG2 code resource (680x0) or the Power
Macintosh code fragment and passes the parameter block through to the
appropriate code. It also frees the code resources or code fragments when a
kPMCleanup or kPMShutdown call is received from PageMaker. All the
sample programs use this standard format for creating fat plug-ins.

Pascal calling convention

Main must be declared with the Pascal calling convention. In Windows, this
function must be exported (either explicitly with the “_export” keyword or
in the module definition file).

Adobe PageMaker Software Development Kit 25

Writing Loadable Plug-Ins

General guidelines

The following guidelines discuss displaying dialog boxes, handling errors,
using global variables, and managing memory.

Dialog boxes or windows

PageMaker dialog boxes and alerts suppressed. When PageMaker passes
control to the plug-in during invocation, and the plug-in begins sending
commands to PageMaker, normal PageMaker dialog boxes, error messages,
and alerts are not displayed. Command parameters (and sometimes
supplemental commands) supply all the information normally provided in
PageMaker dialog boxes. Therefore, when sending commands, a plug-in
must both display its own dialog boxes if it needs the user to specify values
for a command, as well as display its own error messages. (For more
information about error conditions, see “Error and status codes,” which
follows.)

Close your own. If your plug-in opens any dialog boxes or windows, make
sure it closes and disposes of them before it returns from any invocation
calls.

Plug-ins are modal. Therefore, on the Macintosh, floating, non-modal dialog
boxes, palettes, and windows may not work properly from plug-ins. Plug-ins
on the PC, however, do not have this restriction because event dispatching is
handled differently on this platform.

Error and status codes

Error and status codes are defined in PageMakerCQErrs.h. PageMaker and
plug-ins return these codes to report error conditions or the status (success)
of an operation. What displays an error message, PageMaker or the plug-in,
depends upon when an error occurs:

e |f the plug-in is controlling PageMaker (sending it commands and
queries), it is up to the plug-in to display an error message to the user.

e |f a plug-in has returned control to PageMaker, PageMaker displays an
error message if necessary.

Errors from PageMaker while executing commands and queries

To determine if an error has occurred while PageMaker executes a command
or query, a plug-in should check the return code of the operation sending
the command or query. If the code indicates that the command or query
failed, the plug-in can query PageMaker for the error code or string. (See
“GetLastErrorStr” or “GetLastError” in Chapter 10.)

Returning errors to PageMaker

Upon returning from loading, invoking, unloading, cleanup, or shutdown,
the plug-in can return a non-zero error code and pass a handle to an error
string in the hszErrMessage field of the parameter block. PageMaker displays
plug-in errors during these operations.

Format of the error string. The plug-in can optionally supply two messages.
They must be separated by a null character. Regardless of whether the error
string contains one or two messages, it must end with two null characters.
For example:

<Stringl><NULL><NULL>

or

Adobe PageMaker Software Development Kit 26

Writing Loadable Plug-Ins

<Stringl><NULL><St ri ng2><NULL><NULL>

If the plug-in supplies one error message, PageMaker displays “Plug-in error:
Plug-in cannot be completed” followed by the plug-in message. For
example:

0 Il v

Additlen cannok be completed. ————————————— Message supplied by PageMaker
Flic nai faund.

e String 1
ESDIED2A

If the plug-in supplies two messages (as indicated by the null character
separating them), PageMaker displays them in reverse order, substituting
the generic “Plug-in cannot be completed” with the second message. That is,
PageMaker displays “Plug-in error:”, the second message (<String2>),
followed by the first message (<String1>). For example:

@ It b HE e

Can't Encouie 0aiy Tend —— Strin g 2
Mo Tend frlccied.

IEDI 1N String 1

2701:4 025

Global variables

Global variables are not persistent; PageMaker generally unloads a plug-in
after each invocation. For data a plug-in needs to maintain between
invocations, it should use a private memory block, which the plug-in
allocates when first loaded and deallocates when PageMaker shuts down.
(See the description of pluginData in “Loading” and “Shutting down” in
Chapter 3.)

Memory management

PageMaker and plug-ins share the same stack. Keep this in mind when using
local variables or nested procedures. Because the stack is shared by
PageMaker and a plug-in, executing a plug-in from within a plug-in further
reduces the available space on the stack.

A plug-in should allocate only the memory it needs to avoid unnecessary
purging of PageMaker code segments from the heap while the plug-in is
running.

Binary versus text format for commands and queries

Sending plug-in commands and queries in the binary format (and receiving
query replies as binary data, the default) uses less stack space than sending
them as text. PageMaker must parse commands and queries sent in the text
format into binary packets, whereas commands and queries in the binary
format bypass the parser, thus eliminating the need for PageMaker to load
the parser.

Palettes and windows

To maximize the memory available to the plug-in, close all PageMaker
palettes and windows that aren’t needed by the plug-in. Be sure to return
PageMaker to its previous state when the plug-in is through running.

Adobe PageMaker Software Development Kit 27

Writing Loadable Plug-Ins

How a user can maximize memory
A user can maximize the available memory for a plug-in by:

e (Macintosh only) Allocating more memory to PageMaker using the Get
Info dialog box.

e (Macintosh only) Minimizing the size of the disk cache.

e (PConly) Closing other applications in Windows.

Cleanup

It is critical that a plug-in clean up any memory it allocates and any resources
it loads before closing. PageMaker does not check for memory left behind by
a plug-in, and such memory can quickly consume available heap space.

A plug-in is closed after the plug-in responds to the PageMaker kPMUnload
message. On the Macintosh, plug-in code and resources are flushed from the
heap at that time. Any heap objects allocated are placed in the PageMaker
heap and must be flushed by the plug-in.

Under Windows, the plug-in DLL uses PageMaker stack space but may have
its own local heap as well. The plug-in must clean up any objects allocated in
the local and global heap, including dialog boxes, palettes, windows, or
other system resources.

Adobe Memory Manager

Adobe has supplied a library of optional routines for memory management.
These routines are optimized for use by PageMaker and work in both the
Windows and Macintosh environments. Using them can help you write dual-
platform plug-in code more quickly. In particular, we strongly recommend
that you use the Adobe Memory-Manager routines MMAIloc and MMFree,
instead of the standard C routines malloc and free. The Adobe Memory-
Manager routines are described in Chapter 4, “Memory-Manager routines.”

Adobe PageMaker Software Development Kit 28

Writing Loadable Plug-Ins

Writing portable plug-ins

A portable plug-in is a plug-in that you need only recompile to use in
another environment. Because the plug-in interface and the command and
query language are nearly identical in both Windows and on the Macintosh,
it is possible to write a plug-in that you can compile in both environments.

Portable code

You write portable code to be independent from its environment. You must
make no assumptions about the compiler, the processor, or the byte order:

e Avoid using inherently non-portable language features.

e Keep compiler dependencies out of the source code as much as possible.
Hide these dependencies in a header file.

e Conditionally compile or isolate platform-specific code. For clarity,
clearly label any platform-dependent code, for example:

#i f def W NDOWS
#endi f /* W NDOAS */
#i f def MACI NTOSH

#endi f /* MACI NTOSH */

e Use the Adobe Memory-Manager routines and Adobe versions of the C
run-time library routines when possible. These routines help insulate
code from environment dependencies and help reduce the size of your
plug-in. (See Chapter 4, “Memory-Manager routines,” for more
information.)

e Keep processor differences in mind and implement byte-order swapping.
(See "Motorola and Intel processor differences,” which follows.)

Examples: For examples of portable code, see Frame.C, included on disk in
this SDK.

Motorola and Intel processor differences
To make software run on both the Motorola and Intel families of

microprocessors, you must be aware of some of the differences between the
processor families.

Byte order: One major difference is that the order of bytes in a word,
and of words in a long word, is different between the
processor families. Although the bit order in a byte is the
same, the high-order byte comes first in the 680x0 and
PowerPC (Motorola) family, and the low-order byte comes
first in the 80x86 family (Intel).

Floats: Be aware that floating-point values not only have a
different byte order but also have different formats that
may be compiler-dependent.

C-bit field types: The order of bits in C-bit field types is both platform- and
compiler-specific. In plug-in, some compilers will
automatically pad a group of bit fields to a word
boundary, while others will stop at a byte boundary. For

Adobe PageMaker Software Development Kit 29

Writing Loadable Plug-Ins

portability, pad all bit field groups out to a word
boundary.

Binary files: Because of the difference in byte order between the
processor families, binary files that contain SHORTs and
LONGs are not compatible when transported between the
Macintosh and the PC. Code that directly reads binary files
must be able to process reversed byte order. (SHORT and
LONG are data types defined in aldtypes.h.)

Adobe PageMaker Software Development Kit 30

Writing Loadable Plug-Ins

Macintosh development specifics

FAT binary: One executable, two platforms

PageMaker plug-ins for the Macintosh are fat-binary shared libraries that
can run in both PageMaker for the Macintosh and PageMaker for the Power
Macintosh in native mode. While a fat plug-in can be larger than a single
platform plug-in, it lets you distribute and maintain one file for all
Macintosh customers.

Use the sample code in the Frame folder on disk as the framework for your
plug-in. As illustrated at the beginning of this chapter, a fat plug-in consists
of three basic parts. The Frame sample divides the plug-in code into three
projects, which correspond to the three parts of a plug-in:

e Main.p, which creates RAG1, a 68K code resource. RAG1 contains only
the main function and serves as the entry point to the plug-in from
PageMaker. (Main.p is in the RAG1 Main folder.)

e Frame.68k.y, which creates RAG2, a 68K code resource. RAG2 contains
the 68K executable code for the plug-in.

e Frame.PPC.y, which creates a code fragment container in the data fork
of the file. The code fragment container holds the native Power
Macintosh executable code of the plug-in.

To build the final plug-in:

1 Make the 68k project. This creates a resource file containing the RAG1
and RAG2 resources as well as any plug-in specific resources.

2 Make the PPC project. This builds the fat plug-in.

When PageMaker loads the plug-in, it uses main as its entry point. The
loading section of main determines the version, 680x0 or PowerPC, of both
PageMaker and the computer. The invocation section of main jumps to
either the 680x0 code in RAG2 (if PageMaker for the Macintosh is running),
or the Power Macintosh code in the data fork (if PageMaker for the Power
Macintosh is running).

Macintosh initialization calls

Because a plug-in is loaded by PageMaker, it need not make most Macintosh
Toolbox initialization calls and should not make the following calls:

InitDialogs InitResources SetApplLimit
InitFonts InitWindows SetGrowZone
InitGraf MaxApplZone TEInit
InitMenus RsrcZonelnit

We also recommend you do not patch any traps (especially _LoadSeg,

_UnloadSeg, or the Memory-Manager routines).

Do not use the C routine atexit()
Do not call the C routine atexit() or use routines such as the file calls fopen,
__open, and freopen that call atexit() indirectly. Although you can link the
code segments, PageMaker will crash upon exiting if the plug-in has been
loaded anytime during the session. The atexit() routine installs an exit-
handler, but since the plug-in code has already been unloaded when

PageMaker exits, the routine no longer exists.

Adobe PageMaker Software Development Kit

31

Writing Loadable Plug-Ins

Debugging
Refer to the documentation included with Metrowerks CodeWarrior for
information on debugging shared libraries.

Editing the ‘vers’ resource

We strongly recommend that all plug-in libraries include a ‘vers’ resource
that contains the library version and copyright information. This information
is displayed when you select the plug-in file at the desktop and choose “Get
Info...” from the Apple menu.

Adobe PageMaker Software Development Kit 32

Writing Loadable Plug-Ins

Windows development specifics

Microsoft Windows restrictions

On the PC, a plug-ins library is a standard Windows DLL and therefore must
follow all the guidelines outlined for DLLs in the SDK Guide for Microsoft
Windows and Windows NT.

Warning level 2 (Microsoft Visual C++ only). We highly recommend that you
compile your code using at least warning level 2 (/W2) of the Microsoft
Visual C++ compiler. Warning level 2 performs type checking on function
arguments if you provide prototypes with argument types.

PC module-definition file

Every plug-in DLL compiled with Microsoft Visual C++, version 2, must have a
module-definition file. The module-definition file is a text file that defines
the contents and system requirements of a Windows DLL.

The module-definition file for a plug-in generally contains:
e A LIBRARY statement that gives the name of the plug-in module.
e A DESCRIPTION statement that describes the plug-in.

e A HEAPSIZE statement that defines the initial size of the plug-in’s heap
in bytes.

e A CODE statement that defines the memory attributes of the plug-in’s
code segments. This should be set to “MOVEABLE,” “DISCARDABLE,"” and
"LOADONCALL."

e A DATA statement that defines the memory attributes of the plug-in’s
data segment. This should be set to “MOVEABLE,"” “SINGLE,” and
"PRELOAD.”

e An EXPORTS statement that defines the names of each function to be
exported to PageMaker (if they aren’t already marked for export in the
source file).

Note: List the function names only; do not attach ordinal numbers. If you
include an ordinal number with the function name, Windows may not keep
the function name resident. The function names must be resident, since
PageMaker calls the functions by name.

Also note: Both main and the Windows entry procedure, DIIMain, must be
exported functions (either explicitly with the _export keyword or in the
module definition file).

The module-definition file may have any name but must end with a .def file
extension. The following example shows a typical module-definition file for
a plug-in (in this case, for runscrip.add).

LI BRARY RUNSCRP
DESCRI PTI ON ‘ Run script plug-in’
HEAPSI| ZE8192
CODE MOVEABLE DI SCARDABLE LOADONCALL
DATA MOVEABLE SI NGLE PRELOAD
EXPORTS

mai n

D | Mai n

Adobe PageMaker Software Development Kit 33

Writing Loadable Plug-Ins

For detailed information on the module-definition file, see the section on
creating module-definition files in the SDK Guide for Microsoft Windows
and Windows NT

Project files

Project files for the sample plug-ins are included on disk in this SDK. Refer to
these when you create your project file.

Adobe PageMaker Software Development Kit 34

Writing Loadable Plug-Ins

Sample plug-in routine

The following plug-in routines illustrate how you can mix queries and
commands to solve a problem. Although the routine is not complete enough
for real use, it will give you a sense of the language. A more extensive
sample plug-in is included on disk.

PMErr Vi ewl00(sPMPar anBl ockPtr | pPar anBl k)

{

char buf f[100] ;

PBBi nCommandBy Shor t Val ue(| pPar anBl k, pm view, 100);
return CQ_SUCCESS;

}

PVErr RunSt or y(sPMPar anBl ockPt r | pPar anBl k)
{

RC rcvVal = CQ_SUCCESS;

USHORTWSE yI e;

HANDLEhSt or y;

LPSTRI pSt ory;

SHORTar Par e[2] ; /1 parameters for query.

/* set up request and reply units to be the sane.
*/

PBSet Request Uni t s(| pPar anBl k, kMJI nches) ;

PBSet Repl yUni t s(| pPar anBl k, kMJI nches) ;

/* set up specifics for getStoryText query.

*/
arParns[0] = O;
arParns[1] = 3;

if (!(rcval =PBBi nQueryW thParns(| pParanBl k, pm get st or yt ext, kRSPoi nt er,
ar Par s, si zeof (ar Par ns) , kRSHandl e, NULL, MAXSTORYSI ZE)) &&
(hStory = PBCet Repl yDat a(l pParanBl k)))

{
PBText Conmand(| pPar anBl k, kRSHandl e, (LPSTR)hStory);
} else {
/*
** S0 sonething el se, no selection.
*/
}
return (rcval);

}

Adobe PageMaker Software Development Kit 35

Required Routines for Loadable
Plug-Ins

This chapter discusses the routines PageMaker requires of loadable plug-ins.
It details the flow of data between a plug-in and PageMaker through the
parameter block.

Adobe PageMaker Software Development Kit 36

Required Routines for Loadable Plug-Ins

Data flow

A plug-in transfers data to or from PageMaker at various times: at startup,
when invoked, when sending commands or receiving query responses, and at
shutdown. To simplify development and reduce parameter traffic on the
stack, a common parameter block structure is used for all data transfer.
During certain types of transfers, some fields may be unused or optional,
while others may contain data or pointers to other data structures.

Allocated by PageMaker

PageMaker initializes and allocates the parameter block. Because PageMaker
may use a different memory block with each invocation, the plug-in is
passed a pointer to the parameter block every time PageMaker contacts the
library.

Parameter block structure

The parameter block includes two argument blocks: one for plug-in
parameters or parameters to PageMaker commands, and another for
PageMaker replies to queries or functions.

The following diagram depicts the parameter block structure. Versions of
this diagram accompany the description of each routine. The fields used in
the routine are highlighted.

pluginData — If plug-in allocates a data block, it sets this field to
= the handle of that block
["opCode —— PageMaker sets to the desired operation code; plug-in
- LISubCode sets to desired command or query during callback
o PageMaker sets to the identifier of the desired plug-in if
a Clppata | the plug-in file contains more than one plug-in
E N
E [ulSize
o [~ Plug-in uses these fields for command and query
CC parameters during callback
L I rsStyle
[~ pmuUnits [~
[IpData |
2E
E" [ulSize
@' - |~ PageMaker uses these fields for reply data during
o [query callback
M [“rsStyle
- pmuUnits [—
["hszErrMessage [~ If an error occurs, plug-in can set this field to the
- handle of an error string for PageMaker to display
IpfnCallBack [PageMaker sets this field to the pointer (or UPP) to the
= callback routine

Type definition for the parameter block

As specified in PageMakerTypes.h, here are the type definitions for the
parameter block:

struct sPMParanBl ock; //so you can typedef the callback function ptr
#i f defi ned(MACI NTGSH)

typedef pascal short (*fnPMCall backProc) (struct sPMParanBl ock *);
#el se

typedef short (pascal * fnPMCall backProc) (struct sPMParanBl ock *);
#endi f
typedef struct sPMDdat aBl ock

{

Adobe PageMaker Software Development Kit 37

Required Routines for Loadable Plug-Ins

void * pnData; //A handle, pointer, or direct value

unsi gned long pnDataSize; //Size of handle or pointer

unsi gned short pnttyle; //Reference style

unsi gned short pnnits; //For requesting reply units on text queries
} sPMDbat aBl ock, * sPMDat aBl ockPtr;
typedef struct sPMParanBl ock

{
void * magi cID; // Reserved: plug-in should not touch this field
void * pl ugi nData; //For storing plug-in data between invocations

unsi gned short opCode; /1l Used only in main() call from PageMaker
unsi gned I ong subCode; // For plug-in
sPMDat aBl ock request Dat a;
sPNMVDat aBl ock repl yDat a;
Handl e errMessage; // Error text fromplug-in or PM
f nPMCal | backProc pntCal | back; // Callback function pointer
} sPMPar anBl ock, * sPMParanBl ockPtr;

Adobe PageMaker Software Development Kit 38

Required Routines for Loadable Plug-Ins

Inline macros

The PageMakerTypes.h file includes macro definitions to move data into and
out of the correct fields of the parameter block and in and out of data
buffers. Although we do not require that you use these macros, we
recommend that you do. The macros should:

e Speed your development time, especially if you are writing a portable
plug-in. (The macros can be used in both the PC and Macintosh
environments.)

e Make your plug-ins easier to update. (Future versions of the plug-ins
mechanism may use functions of the same names.)

e Reduce the potential for errors. (The macros have been tested and
perform valuable tasks, such as clearing the parameter block when
appropriate.)

These macros are described in Chapter 5.

Adobe PageMaker Software Development Kit 39

Loading

Required Routines for Loadable Plug-Ins

A plug-in loading routine performs any initialization needed for its first
invocation and allocates memory for data (if needed).

Macintosh:

Op code:

Return code:

pluginData:

hszErrMessage:

If loading fails:

Example

The RAG1 main routine loads either the code fragment
(Power Macintosh) or code resource (680x0). On the Power
Macintosh, it also stores the connection ID and entry point
for subsequent invocations.

kPMLoad: PageMaker sends kPMLoad when the user
selects a plug-in from the PageMaker Plug-ins submenu
(or from a script) or when another plug-in requests the
plug-in. If the library is already open, PageMaker sends
kPMInvoke instead.

The plug-in should return CQ_SUCCESS or a non-zero
return code (as defined in PageMakerCQErrs.h).

L pluginData — If plug-in allocates a data block, its sets to handle to
r block (see notes)
-opCode | PageMaker sets to kPMLoad
L. ulSubCode
a :IpData
a2y -
)
= L ulSize
o
T
E |-rsStyle
[}
| pmuUnits
|-IpData
& L ulSize
o | rsStyle
[_pmuUnits
[hszErrMessage | If an error occurs, plug-in can set to handle to error
5 string for PageMaker to display (see notes)
LIpfnCallBack | _ PageMaker sets to pointer to callback routine

If the plug-in needs a persistent data block, it should
allocate it during loading and set this field to the handle
to the data block. PageMaker supplies this handle back to
the plug-in on subsequent calls. Therefore, the plug-in
should make sure the field is null before setting it.

If the plug-in returns a non-zero return code, it can set
this to a handle to a string that describes why the
requested operation failed. The string must end in two
null characters, but it may consist of two parts separated
by a null character. (See “Error and status codes” in
Chapter 2 for a description of the format of this string.) If
the plug-in fails for any reason during loading, use this
string to describe the problem to the user.

If loading fails, PageMaker calls the unloading routine.

PMVEr r kPMLoad(sPMPar anBl ockPtr | pPar anBl k)

{

Adobe PageMaker Software Development Kit 40

Required Routines for Loadable Plug-Ins

HANDLEhMyDat a = (HANDLE) | pPar anBl k- >pl ugi nDat a;
short *ps;
if (!hMyData) {// hMyData will be NULL if

/1l plug-in has never been call ed.

/1 Allocate pluginData:
/1 This maintains the | ast count of nunber of boxes across

/1l a page, used by the sanmple BoxTest routine's Dial og Box.

hMyDat a = MVAI | oc(SI ZE_OF_DATA) ;
| pPar anBl k- >pl ugi nDat a = hMyDat a;

ps = (short*)MVLock(hMyDat a) ;
*ps = DEF_NUM BOXES;// default nunber of boxes for dial og.
MMUNnI ock(hMyDat a) ;

}
return CQ_SUCCESS,

}

Adobe PageMaker Software Development Kit 41

Required Routines for Loadable Plug-Ins

Invoking

A plug-in’s invocation routine jumps to the plug-in‘s working code. On the
Macintosh, the plug-in jumps to either RAG2 for 680x0 code or to the data
fork for Power Macintosh code, depending upon the PageMaker version and
the type of Macintosh.

Op code: kPMInvoke: PageMaker sends kPMInvoke when the user
selects a plug-in from the PageMaker Plug-ins submenu
(or from a script) or when another plug-in requests it.
PageMaker always loads the plug-in before sending
kPMInvoke unless the plug-in is already open.

Return code: The plug-in should return CQ_SUCCESS or a non-zero
return code (as defined in PageMakerCQErrs.h).

LpluginData L PageMaker sets to handle if plug-in allocated a data
C block when loaded.
opCode | PageMaker sets to kPMInvoke
[ulSubCode | PageMaker sets to identifier of desired plug-in if library
B contains more than one plug-in
a :IpData
w1 b
L]
L ulSize
g
a1}
E - rsStyle
-
[pmuUnits
- IpData
2E
& [ulSize
o | rsStyle
|_pmuUnits
[hszErrMessage | If an error occurs, plug-in can set to handle to error

- string for PageMaker to display (see notes)

LIpfnCallBack | PageMaker sets to pointer to callback routine

hszErrMessage: |If the plug-in returns a non-zero return code, it can set
this to a handle to a string that describes why the
requested operation failed. The string must end in two
null characters, but it may consist of two parts separated
by a null character. (See “Error and status codes” in
Chapter 2 for a description of the format of this string.) If
the plug-in fails for any reason during invocation, use this
string to describe the problem to the user.

Example

PVErr Dol nvoke(sPMPar anBl ockPt r | pPar anBl k) {
swi tch(PBGetld(l pParanBl k))
{
case kPubl nfo:
PMErr = Pl acePubl nf o(| pPar anBl k) ;
br eak;
case kVi ewl00:
PVErr = Vi ewd00(| pParanBl k) ;
br eak;

defaul t:

Adobe PageMaker Software Development Kit 42

Required Routines for Loadable Plug-Ins

PMErr = RC_FAI LURE;

br eak;

}
return CQ _SUCCESS; }

Adobe PageMaker Software Development Kit 43

Required Routines for Loadable Plug-Ins

Unloading

A plug-in’s unloading routine performs any cleanup required to minimize a
plug-in‘s memory footprint, such as updating global data, freeing any
memory allocated (other than that pointed to by pluginData), and
unloading resources and any additional code segments (Macintosh).

Op code: kPMUnload: PageMaker sends kPMUnload when the plug-
in has returned from its invocation routine.

Return code: The plug-in should return CQ_SUCCESS or a non-zero
return code (as defined in PageMakerCQErrs.h).

[pluginData —— If the plug-in has deallocated its data block, it sets to
r NULL (see notes)
- opCode | PageMaker sets to kPMUnload
L ulSubCode
a :IpData
iy -
)
w LulSize
=5
M
E - rsStyle
(1]
[pmuUnits
- IpData
&, [ulSize
o | rsStyle
| pmuunits
| hszErrMessagel— If an error occurred, plug-in can set to handle to error
N string for PageMaker to display (see notes)
-IpfCallBack | PageMaker sets to pointer to callback routine

pluginData: If the plug-in previously allocated a private data block
(the field contains a handle) and does not need it for
subsequent calls this session, the library should deallocate
the block and set this field to NULL.

hszErrMessage: |If the plug-in returns a non-zero return code, it can set
this to a handle to a string that describes why the
requested operation failed. The string must end in two
null characters, but it may consist of two parts separated
by a null character. (See “Error and status codes” in
Chapter 2 for a description of the format of this string.) If
the plug-in fails for any reason during unloading, use this
string to describe the problem to the user.

Example

PVErr DoUnl oad(sPMPar anBl ockPt r | pPar anBl k)
{
/1 Do any cl eanup necessary before plug-in code segnent is unl oaded.
/1l Update any gl obal data, free nenory all ocated except pluginData
/1 Unl oad resources, etc.

return CQ _SUCCESS;
}

Adobe PageMaker Software Development Kit 44

Required Routines for Loadable Plug-Ins

Cleaning up

A plug-in’s cleanup routine frees as much memory as it can, including any
memory the plug-in allocated and any resources not needed immediately. (In
future versions, PageMaker may cache plug-ins rather than unload them
after each invocation and will use this routine to clear them from memory.)

Op code: kPMCleanup: PageMaker sends kPMCleanup when
memory becomes critically low.

Return code: The plug-in should return CQ_SUCCESS or a non-zero
return code (as defined in PageMakerCQErrs.h).

L pluginData — If using a data block, plug-in sets to NULL after
deallocating block (see notes)

L opCode | ___PageMaker sets to kPMCleanup
L ulSubCode

al IpData

=1 -

o}

w LulSize

o

L1}

E - rsStyle

-

L. pmuUnits
- IpData

2L

& | ulSize

o | rsStyle

pmuuUnits

L hszErrMessage|— If an error occurs, plug-in can set to handle to error
C string for PageMaker to display (see notes)
L IpfnCallBack | PageMaker sets to pointer to callback routine

pluginData: |If the plug-in previously allocated a private data block
(the field contains a handle) and does not need it for
subsequent calls this session, the library should deallocate
the block and set this field to NULL.

hszErrMessage: |If the plug-in returns a non-zero return code, it can set
this to a handle to a string that describes why the
requested operation failed. The string must end in two
null characters, but it may consist of two parts separated
by a null character. (See “Error and status codes” in
Chapter 2 for a description of the format of this string.) If
the plug-in fails for any reason during cleanup, use this
string to describe the problem to the user.

Minimizing
private memory
block: To minimize the size of the private memory block, a plug-
in can write data to the resource fork (Macintosh), data
fork (Macintosh), or private configuration file (Windows
and Macintosh).

Example
PVErr Dod eanup(sPMPar anBl ockPtr | pPar anBl k)
{

/'l Free any menory allocated, resources, and additional menory

/1 If PMstill doesn't have enough nenory, PM procedes with Shutdown

Adobe PageMaker Software Development Kit 45

Required Routines for Loadable Plug-Ins

// Save data to config file & free
return CQ _SUCCESS;
}

Adobe PageMaker Software Development Kit 46

Required Routines for Loadable Plug-Ins

Shutting down

A plug-in’s shutdown routine deallocates memory it has used and saves any
settings or values in the private memory block if appropriate.

Op code: kPMShutdown: PageMaker shuts down all plug-ins when
the user selects “Quit” from the PageMaker File menu.

Return code: The plug-in can return any return code because
PageMaker ignores the value and proceeds with
shutdown.

- pluginData — If using a data block, plug-in sets to NULL after
deallocating block (see notes)

- opCode L PageMaker sets to kPMShutdown
L ulSubCode

-IpData

| ulSize

- rsStyle
L pmuUnits

abR=aqi=s10ak

-IpData

|_ulSize

| rsStyle
| pmuUnits

abPeplyData

LhszErrMessage | |f an error occurs, plug-in can set to handle to error

C string for PageMaker to display (see notes)

HIpfnCallBack L PageMaker sets to pointer to callback routine

pluginData: If the plug-in previously allocated a private data block
(the field contains a handle) and does not need it for
subsequent calls this session, the library should deallocate
the block and set this field to NULL.

hszErrMessage: |If the plug-in returns a non-zero return code, it can set
this to a handle to a string that describes why the
requested operation failed. The string must end in two
null characters, but it may consist of two parts separated
by a null character. (See “Error and status codes” in
Chapter 2 for a description of the format of this string.) If
the plug-in fails for any reason during cleanup, use this
string to describe the problem to the user.

Example

/1 PageMaker is shutting down. Save necessary info to disk.
/'l Free all allocated nmenory, including pluginData or
/'l menory in dobal Heap. Last call before plug-in is closed.

PMVEr r DoShut down(sPMPar anBl ockPtr | pPar nBl k)

{

HANDLE hMData = PBGCet Pl ugi nDat a(| pPar Bl k) ;

i f (hMyDat a)

MVFree(hMyData); // Free private data handl e:

return CQ_SUCCESS;

Adobe PageMaker Software Development Kit 47

Required Routines for Loadable Plug-Ins

Adobe PageMaker Software Development Kit 48

Required Routines for Loadable Plug-Ins

Sending commands to PageMaker

When a plug-in sends commands to PageMaker it sets the parameters noted
below.

A plug-in sends commands before it has returned from its invocation
routine.

Return code: PageMaker returns CQ_SUCCESS or a non-zero return
code. Return codes are defined in PageMakerCQErrs.h. If
the return code indicates PageMaker has encountered an
error, the plug-in can query PageMaker for the last error
string and display that message to the user. (See “Error
and status codes” in Chapter 2 and “GetlLastErrorStr” in
Chapter 10.)

pluginData
[opCode L Plug-in sets to constant for desired command
CoISubCode (add pm_ to command name)
~ FlpData L Plug-in sets to pointer or handle to command
= parameters, or sets to actual value (see notes)
=
W [ulSize | Plug-in sets to size of data pointed to by
=85 abRequestData.lpData
L1
% sStle |— Plug-in sets to constant kRSPointer, kRSHandle,
- ComuUnits kRSValue, or NULL to reflect content of .IpData

[I[pData —L Plug-in sets to constant for units used for
- measurements in command arguments (See notes)

l-ulSize

[TSSTyle

abPeplyData

L pmuUnits

T
]
N

ErrMessage

[IpfnCallBack

abRequestData.lp
Data: The plug-in sets this field to a pointer or handle to the
command arguments if any, or if the arguments fit within
the four-byte field (ULONG), the actual values. If the
command does not require any parameters, the plug-in
should set the field to NULL. PageMaker ignores the
remaining fields if abRequestData.lpData is NULL.

abRequestData.pm

uUnits: If using the text format, the plug-in sets this field to the
measure unit constant for coordinates and values in the
command arguments. Measurements that accompany
binary commands must be specified in twips (PageMaker’s
internal measurement system). Unit constants for data in
the text format are:
kMUNull
kMUlInches
kMUDeclnches
kMUCentimeters
kMUPicas
kMUPoints

If measurements are in the publication default units, use
kMUNull.

Adobe PageMaker Software Development Kit 49

Required Routines for Loadable Plug-Ins

Deallocating
buffers: The plug-in must deallocate any buffers it allocated.

Example

The macros used in this sample are described in Chapter 5, “Macros.”
/**[nTc***

*Box

*

* DESCRI PTI ON:

*Draws a box. Desel ects anything selected first to avoid adding

*box to selection list. Uses binary format. INCH converts inches

*to tw ps.

*

rrl */

PMEr r Box(sPMPar anBl ockPtr | pPar anBl k)

{
PMRect r Box;

PBBi nComrand(| pPar anBl k, pm desel ect, KRSNul | , NULL, NULL) ;
/| desel ect anything sel ected.
PBBi nComand(| pPar anBl k, pm box, kRSPoi nt er,
PMSet Rect (& Box, (2*1 NCH), (3*I NCH), (4*I NCH), (5*I NCH)), si zeof (PMRect));
PBBi nComand(| pPar anBl k, pm col or, kRSPoi nt er, "Red", 4) ;
/1 4 = strlen("Red")+1
return CQ_SUCCESS,

}

Adobe PageMaker Software Development Kit 50

Required Routines for Loadable Plug-Ins

Sending queries to PageMaker

When a plug-in sends a query to PageMaker, it needs to include the
parameters noted below. A plug-in sends queries before it has returned from
its invocation routine.

Return code:

Notes:
abRequestData.lp
Data:

abRequestData.pm
uUnits:

PageMaker returns CQ_SUCCESS or a non-zero return
code. Return codes are defined in PageMakerCQErrs.h. If
the return code indicates PageMaker has encountered an
error, the plug-in can query PageMaker for the last error
string and display that message to the user. (See “Error
and status codes” in Chapter 2 and “GetlLastErrorStr” in
Chapter 10.)

- ulSubCode

Plug-in sets to constant for desired query
(add pm_ to query name)

Plug-in sets to pointer or handle to query parameters, ol
sets to the actual value (see notes)

Plug-in sets to size of data pointed to by
abRequestData.lpData

Plug-in sets to constant kRSPointer, kRSHandle,
kRSValue, or NULL to reflect content of .[pData

Plug-in sets to constant for units used for
measurements in query arguments (see notes)

o)
=
bl
o
un
m
-
(=2
i
o
L
5]

Plug-in can allocate reply buffer, specify maximum
size of reply, or let PageMaker allocate reply buffer
(see notes)

- IpfnCallBack

The plug-in sets this field to a pointer or handle to the
query arguments if any, or if the arguments fit within the
four-byte field (ULONG), the actual values. If the query
does not require any parameters, the plug-in sets the field
to NULL, thus indicating that PageMaker can ignore the
remaining fields.

If using the text format, the plug-in sets this field to the
measure unit constant for coordinates and values in the

guery arguments. Measurements that accompany binary

queries must be specified in twips (PageMaker’s internal
measurement system). Unit constants for data in the text
format are:

kMUNull

kMUInches

kMUDecInches

kMUCentimeters

kMUPicas

kMUPoints

If measurements are in the publication default units, use
kMUNull.

Adobe PageMaker Software Development Kit 51

abReplyData.lpd

ata:

abReplyData.ul

Size:

abReplyData.rs

Style:

abReplyData.pmu

Required Routines for Loadable Plug-Ins

A plug-in can pre-allocate a buffer for the reply, let
PageMaker allocate a buffer, or have PageMaker set this
field to the actual value. How you specify one of these
options is described in the table that follows.

If the plug-in has pre-allocated a buffer, PageMaker
leaves this field unchanged. If the field is null, PageMaker
supplies a handle or pointer, as indicated in the table.

A plug-in can set this field to one of the following (also
see the table that follows):

® The size of the buffer the plug-in allocated for reply
information (if abReplyData.lpData points to a buffer)

e The maximum size of the reply data the plug-in can
accept

e NULL if the plug-in allows PageMaker to allocate the
reply data. In this case, PageMaker sets the field to the
size of the reply data.

A plug-in can set this to the constant kRSPointer,
kRSHandle, or kRSValue, depending upon if it has pre-
allocated a buffer, wants PageMaker to allocate a buffer,
or wants PageMaker to set abReplyData.lpData to the
query value. See the table that follows.

Because it is often necessary for PageMaker to resize a
buffer to accommodate query results, we recommend the
plug-in pass a handle rather than a pointer, allowing
PageMaker to resize the buffer as needed. Use kRSPointer
only to point to buffers in your local stack frame or in the
global heap.

Units: When using the text format, the plug-in can specify the
measurement units PageMaker should use for the reply
values. See abRequestData.pmuUnits for the unit
constants. When using the binary format, PageMaker uses
twips only for reply values.

PageMaker leaves this field unchanged. For queries in the
text format, if the plug-in does not specify units,
PageMaker uses the publication default units.
Table of
abReplyData
fields: The following table summarizes how a plug-in can set the
abReplyData fields:
IpData .rsStyle .ulSize Description
Pointer/ Required Required PageMaker should use this reply buffer.
handle
NULL kRSHandle* NULL PageMaker should allocate a buffer of this style.
NULL kRSHandle* Value PageMaker should allocate a buffer of this style
no larger than IpReplyData.ulSize.

Adobe PageMaker Software Development Kit 52

Required Routines for Loadable Plug-Ins

IpData .rsStyle .ulSize Description

NULL NULL Value PageMaker should allocate a buffer no larger
than IpReplyData.ulSize.

NULL NULL NULL PageMaker should allocate the buffer as
needed.

NULL kRSValue NULL PageMaker should return the reply data in the
four-byte abReplyData.lpData field.

* A plug-in must always request a handle when it needs PageMaker to allocate the reply buffer. The
plug-in, however, is responsible for deallocating the buffer.

Getting replies in
the text format:

The binary format is the default reply format for text
queries, and the only format for replies from binary
queries. When using the text format, you can request that
the replies be in the text format by including a flag,
kXRFText, with the reply style constant in
abReplyData.rsStyle. (kXRFText is defined in
PageMakerTypes.h.) For example:

flag = kRSHandl e | kXRFText// Pass back by handl e as ASCl I
t ext

If you include kXRFText with a binary query, PageMaker
ignores your request. (Note that in cases where the actual
return value of a binary query is text—such as a
publication name, a font name, or story text—PageMaker
returns a null-terminated string.) The examples below
illustrate how to specify formats for return values.

rcvVal = PBText Query(l pParanmBl k, // Gets object list for
current page

kRSPoi nter, “getobjectlist”,// By default, returnis in
bi nary

kRSHandl e, NULL, MAXSI ZE);// format for text and binary
queri es.

rcVal = PBText Query(l pParanBl k,// Gets object list for
current page

kRSPoi nter, “getobjectlist”,

kRSHandl e | kRFBi nary,// specifies binary format for
results.

NULL, MAXSI ZE);

rcVal = PBText Query(l pParanBl k,// Gets object list for
current page

kRSPoi nter, “getobjectlist”,
kRSHandl e | kXRFText, // specifies text format for results
NULL, MAXSI ZE);

rcVal = PBBi nQuery(l pParanBl k,// Binary reply is always in
tw ps

pm get obj ect li st
kRSHandl e | kXRFText,// PageMaker ignores kXRFText fl ag
NULL, MAXSI ZE);

Adobe PageMaker Software Development Kit 53

Required Routines for Loadable Plug-Ins

Deallocating
memory: The plug-in must deallocate any buffers that it or
PageMaker allocated to hold query results.

Buffer too small: If the reply buffer the plug-in allocated wasn’t large
enough for the reply data, PageMaker returns the failure
code RC_BUFFSIZE_TOO_SMALL.

Important!
Pointer versus
handle: In general, we suggest you allocate memory on the heap.
Only allocate memory on the stack for data that is small
and needed temporarily. Allocate memory on the heap for
data shared by plug-ins or that needs to be retained.

Example

The following sample code demonstrates the various ways to request query
results and provide query parameters. It places the acquired text as a new
story. (The macros used in this sample are described in Chapter 5, “Macros.”)

/**[nTc***

*RunQrest

* DESCRI PTI ON

*This routine tests the different ways to request query results and
*provi de conmand or query paranmeters. In addition, conmands nay
*use the ...ConmmandByShort Val ue or ... ComrandByLongVal ue macros

*as a conveni ence. Queries w thout paranmeters can use the PBBi nQuery
*macro as well, the paraneters would be the sane as those used here

*for reply packets.

*

rr] */

RC RunQrest (sPMPar anBl ockPtr | pPar anBl k)
{
HANDLE h=MVAI | oc(STORYSI ZE) ;
HANDLE nyHandl e; // static handle
HANDLE hMyPar ns;
LPSTR psz;
SHORT arParns[2]; // paranmeters for query.
RC rcVval = CQ_SUCCESS;
PMPoint ptResult; // point to top, left of newresults story.

char buff[STORYSI ZE]; // static buffer.

Set Handl e(&h, "Reply Style Variation Tests:\n---------cnommmmmoo
\n\n");

/* set up request and reply units to be the sane.
*/

PBSet Request Uni t s(| pPar anBl k, kMJI nches) ;

PBSet Repl yUni t s(| pPar anBl k, kMJI nches) ;

/* set up specifics for getStoryText query.

*/

Adobe PageMaker Software Development Kit 54

Required Routines for Loadable Plug-Ins

/1 This test suite tests only reply buffers, but uses all
/'l reference styles. The first sanple is the recomended

// way to use queries and paraneters.

/1 Buffer not supplied, Handle, size not given:
HStrCat (&, "4. Buffer not supplied, Handle, size not given: ");
rcVal = PBBi nQuer yWt hPar nms(| pPar anBl k, pm _get st or yt ext, kRSPoi nt er, ar Par ns,
si zeof (ar Par ns) , KRSHandl e, NULL, NULL) ;
myHandl e = PBGet Repl yDat a(| pPar anBl k) ;
if (!rcval && nyHandle) {
DoSuccess(&, MvLock(nyHandl e));
MWUnl ock(myHandl e) ;
} else {
DoFai | ure(&h, rcval);

}
i f (nmyHandl e) MVFree(nyHandl e);

/1 Buffer supplied, pointer.

ar Par ns[0] 0;

arParns[1] = 3;

rcVal = PBBi nQuer yWt hPar nms(| pPar anBl k, pm _get st or yt ext, kRSPoi nt er, ar Par ns,
si zeof (ar Par ns) , KRSPoi nt er, buf f, STORYSI ZE) ;

if (!(rcval)) {
DoSuccess(&h, buff);

} else {

DoFai |l ure(&h, rcval);

/1 Buffer supplied, handle.
HStrCat (&, "2. Buffer supplied, handle: ");
myHandl e=MVAI | oc(STORYSI ZE) ;
rcVal = PBBi nQueryW t hPar ns(| pPar anBl k, pm get st or yt ext , KRSPoi nt er, ar Par ns,
si zeof (ar Par ns) , kRSHandl e, myHandl e, STORYSI ZE) ;
if (!(rcval)) {
DoSuccess(&h, MVLock(nyHandl e));
MMUNI ock(myHandl e) ;
} else {
DoFai |l ure(&h, rcval);

}
i f (nyHandl e) MVFree(nyHandl e);

}

/1 Buffer not supplied, Handle, size given:

Adobe PageMaker Software Development Kit 55

Required Routines for Loadable Plug-Ins

HStrCat (&, "3. Buffer not supplied, Handle, size given: ");
rcVal = PBBi nQuer yWt hPar nms(| pPar anBl k, pm _get st or yt ext, kRSPoi nt er, ar Par ns,
si zeof (ar Par ns) , KRSHandl e, NULL, STORYSI ZE) ;
myHandl e = PBGet Repl yDat a(| pPar anBl k) ;
if (!rcval && nyHandl e) {
DoSuccess(&, MvLock(nyHandl e));
MVUNI ock(nyHandl e) ;
} else {
DoFai | ure(&h, rcval);

}
i f (nmyHandl e) MVFree(nyHandl e);

/1l Buffer not supplied, no style, size given:
HStr Cat (&, "5. Buffer not supplied, no style, size given: ");
rcVal = PBBi nQuer yW t hPar ns(| pPar anBl k, pm get st or yt ext, kRSPoi nt er, ar Par s,
si zeof (ar Par ns) , NULL, NULL, MAXSTORYSI ZE) ;
nyHandl e = PBGet Repl yDat a(| pPar anBl k) ;
if (!rcval && nyHandl e) {
DoSuccess(&h, MVLock(nyHandl e));
MVUNI ock(myHandl e) ;
} else {
DoFai |l ure(&h, rcval);

}
i f (nyHandl e) MVFree(nyHandl e);

/1 Buffer not supplied, no style, size not given:
HStrCat (&, "6. Buffer not supplied, no style, size not given: ");
rcVal = PBBi nQuer yW t hPar ns(| pPar anBl k, pm get st or yt ext , KRSPoi nt er, ar Par ns,
si zeof (ar Parns), NULL, NULL, NULL) ;
myHandl e = PBGet Repl yDat a(| pPar anBl k) ;
if ('rcval && nyHandle) {
DoSuccess(&, MvLock(nyHandl e));
MMUNnI ock(myHandl e) ;
} else {
DoFai | ure(&h, rcval);

}
i f (myHandl e) MVFree(mnmyHandl e);

/1l These tests try the query with reference style #6, using

/1l each reference style for the query paraneters.

HStrCat (&, "\nParameter Style Variation Tests:\n------------cmommooooo

---\n\n");
HStrCat (&h, "7. By Value, 2 Shorts: ");

Adobe PageMaker Software Development Kit

56

Required Routines for Loadable Plug-Ins

rcval =
PBBi nQuer yW t hPar ns(| pPar anBl k, pm _get st or yt ext , KRSVal ue, MAKELONG(ar Par s[1],

arParns[0]), si zeof (LONG , NULL, NULL, NULL) ;
nyHandl e = PBGet Repl yDat a(| pPar anBl k) ;
if (!rcval && nyHandl e) {

DoSuccess(&h, MVLock(nyHandl e));

MMUNI ock(myHandl e) ;
} else {

DoFai | ure(&h, rcval);

}
i f (nyHandl e) MVFree(nyHandl e);

HStrCat (&, "8. By Pointer: ");
rcVal = PBBi nQuer yW t hPar ns(| pPar anBl k, pm get st or yt ext, kRSPoi nt er, ar Par s,
si zeof (ar Parns), NULL, NULL, NULL) ;
nyHandl e = PBGet Repl yDat a(| pPar anBl k) ;
if (!rcval && nyHandl e) {
DoSuccess(&h, MVLock(nyHandl e));
MVUNI ock(myHandl e) ;
} else {
DoFai |l ure(&h, rcval);

}
i f (nyHandl e) MVFree(nyHandl e);

HStrCat (&h, "9. By Handle: ");
hMyParns = MVAI | oc(si zeof (ar Parns));
psz = MVLock(hMyPar ns) ;
((short*)psz)[0] = arParns[0];

((short*)psz)[1] ar Par ns[1] ;

MVUNI ock(hMyPar ns) ;

rcVal = PBBi nQuer yWt hPar nms(| pPar anBl k, pm _get st or yt ext, kRSHandl e, hMyPar ns,
si zeof (ar Parns), NULL, NULL, NULL) ;

myHandl e = PBGet Repl yDat a(| pPar anBl k) ;

if (!rcval && nyHandle) {
DoSuccess(&, MvLock(nyHandl e));
MWUnl ock(myHandl e) ;

} else {
DoFai | ure(&h, rcval);

}

i f (nyHandl e) MVFree(myHandl e);

MVFr ee(hMyPar s) ;

/1 The test results are placed as a new story.

Adobe PageMaker Software Development Kit 57

Required Routines for Loadable Plug-Ins

/1
/1 This deselects the current selection (story text), so
/1l the selection list is clear and the new story will be

/1 the only thing selected.

/1 desel ect original text.
PBBi nComrand(| pPar anBl k, pm desel ect, KRSNul | , NULL, NULL) ;
PBBi nCommand(| pPar anBl k, pm _newst or y, KRSPoi nt er , PMset Poi nt (&pt Resul t, 0, 0),
si zeof (PMPoi nt)) ;
/1l set font to 14.0 points.
PBBi nCommandBy Short Val ue(| pPar anBl k, pm si ze, 140);
PBBi nCommand(| pPar anBl k, pm t ext ent er, kRSHandl| e, h, MVSi ze(h));

MVFree(h); // free the handle that contained the results.

return CQ_SUCCESS;
}

Adobe PageMaker Software Development Kit 58

Memory-Manager Routines for
Loadable Plug-ins

This chapter describes the Adobe Memory-Manager routines for allocating,
referencing, locking, and freeing memory.

Why use these routines?

In this version of PageMaker, we do not require you to use our memory-
management routines in a loadable plug-in. However, you may be required
to use these routines in future versions. Although optional, these routines
can save you time in both developing and testing your plug-in. They have
been used extensively in our products and are reliable.

In addition, these routines work in both the Windows and Macintosh
environments. Therefore, using them can really help you if you develop
portable plug-ins (plug-ins that you can compile and use in both
environments).

Where to find the routines

This SDK includes the header and source files your plug-in needs to use the
Adobe Memory-Manager routines: PageMakerMemory.h and util.c.

Adobe PageMaker Software Development Kit 59

Memory-Manager Routines for Loadable Plug-ins

Adobe Memory-Manager routines

The following list briefly describes the Memory-Manager routines you may
want to use in your plug-in. The Memory Manager provides routines for
allocating relocatable memory.

MMAIlloc:

MMFree:

MMGetPointer:
MMLock:
MMResizeHandle:

MMUnlock:

Allocates relocatable memory and returns a handle to it.
(In Windows, memory is allocated from the global heap.)
Use this routine to allocate memory that is retained
between invocations of a plug-in, such as memory for user
preferences. (Equivalent to Macintosh NewHandle.)

Frees memory allocated with MMAIlloc. (Equivalent to
Macintosh DisposHandle.)

Gets pointer to locked memory block.
Locks handle in memory and returns a pointer to it.
Changes size of a relocatable memory block.

Unlocks locked memory.

Adobe PageMaker Software Development Kit 60

Memory-Manager Routines for Loadable Plug-ins

MMAIlloc

HANDLE MVAI | oc(dwSi ze)

Allocates a block of global memory and returns a handle to the memory. On
the PC, the memory is allocated from the global heap. The block is not
initialized. (On the Macintosh, this routine is equivalent to the NewHandle
routine.)

Type Parameter Description

DWORD dwsSize Amount of memory to be allocated

Return value: A handle to the allocated memory or NULL if the routine
fails.

Relocatable
memory: Memory allocated with MMAIlloc is relocatable. The
handle is always valid and there is no loss of data when a
block is moved because the master pointer is updated if
the block is relocated.

Locking the
handle: To access the allocated memory, lock the memory using
MMLock.

Private data: Plug-in libraries should use this routine to allocate global
memory for the private data that PageMaker maintains
after the plug-in is unloaded.

Freeing memory: Use MMFree to free memory allocated with MMAIloc.

Handling errors: If the operating system fails to allocate memory, the plug-
in should return RC_NSF_MEMORY to PageMaker.

Example

The following example uses MMAIlloc, MMLock, and MMUnlock.

PVErr DoLoad(sPMPar anBl ockPt r | pPar anBl k)

{

HANDLE hMyData = PBCet Pl ugi nDat a(l pPar anBl k) ;
short *ps;

if (!hMyData) { /1 is NULL if plug-in has never been called

/1 Al ocate pluginData:

/1 Maintains |ast count of boxes across a page, used by BoxTest exanple.

hMData = MVAI | oc(Sl ZE_OF_DATA) ;
PBSet Pl ugi nDat a(| pPar anBl k, hMyDat a) ;

ps = (short*)MMLock(hMyDat a) ;
*ps = DEF_NUM BOXES; [/ default nunber of boxes for dialog.

Adobe PageMaker Software Development Kit 61

Memory-Manager Routines for Loadable Plug-ins

MVUNI ock(hMyDat a) ;

}
return CQ_SUCCESS;

}

Adobe PageMaker Software Development Kit 62

Memory-Manager Routines for Loadable Plug-ins

MMFree

voi d MVFree(hMem

Frees a movable block of global memory allocated by MMAIloc. The block
must be unlocked to be freed. (On the Macintosh, this routine is equivalent
to the DiposHandle routine.)

Type Parameter Description

HANDLE hMem A handle to the block of memory to be freed

Return value: None.

Unlocking handle: Unlock the handle before attempting to deallocate the
memory. See example below.

Example

The following example uses MMLock, MMUnlock, and MMFree.
PMVEr r Box(sPMPar anBl ockPtr | pPar anBl k)

{

RC rcVal ;

short *spNumPages = O0;

HANDLE hNunPages = O;

/1l First nmake sure there is a page to draw on.

rcVal = PBBi nQuery(Il pParamBl k, pm get pages, kRSHandl e, NULL, NULL);
hNunPages = PBCet Repl yDat a(| pPar anBl k) ;

spNunPages = (short*) MMLock(hNunPages);

/11f there are one or nore pages in the pub, post the sanple dial og.
/I Ot herwi se post an error.

i f (*spNunmPages)

rcVal = Post Sanpl eDi al og(| pParanBl k) ;

el se

return Error (Il pParanBl k, RC FAILURE, “Error: no pages found.”,”");
MVUNI ock(hNunPages) ;

MVFr ee(hNunPages) ;

return (rcVval);

}

Adobe PageMaker Software Development Kit 63

Memory-Manager Routines for Loadable Plug-ins

MMGetPointer

LPSTR MVGet Poi nt er (hLockedHandl e)

Returns a pointer to a locked handle. This routine is the only safe way to get

a pointer for a locked handle.

Type

Parameter

Description

HANDLE

hLocked

Handle Locked handle to the memory block
for which a pointer is requested.

Return value:

Example

Here is a sample use of this routine:

LPSTR | pDat a;

if (!(IpData = MVCGet Poi nter (hMem))

{
.. * failed */

}

A pointer to the locked block or NULL if the routine
failed.Use this function if the plug-in does not have the
pointer returned by MMLock. The handle must be locked
before calling MMGetPointer.

Adobe PageMaker Software Development Kit

64

Memory-Manager Routines for Loadable Plug-ins

MMLock

LPSTR MVLock(hMem)

Locks a relocatable block of global memory so it can be safely accessed.

Type

Parameter

Description

HANDLE

hMem

Handle to be locked

Return value:

Locking required:

Locking a locked
block:

A pointer to the locked block or NULL if the routine failed.

A plug-in must always lock a block of memory allocated
with MMAIlloc before accessing it.

If a plug-in locks an already locked block of memory, the
block’s state won’t change: it remains locked.

Note: Windows keeps track of the number of times a block of memory is
locked; the Macintosh does not. Therefore, to free a block of memory in
Windows, a plug-in must unlock the block the same number of times it
locked it. On the Macintosh, a plug-in need unlock a locked block only once
to free it, regardless of the number of times it was locked.

Example

Here is a sample use of this routine (for a more complete example, see the
sample code in the descriptions of MMAIloc and MMFree):

spNunmPages = (short*) MVLock(hNunPages) ;

Adobe PageMaker Software Development Kit

65

Memory-Manager Routines for Loadable Plug-ins

MMResizeHandle

PMErr MVResi zeHandl e(| phMem dwSi ze)

Changes the size of an unlocked block of memory.

Type Parameter Description

LPHANDLE IphMem Pointer to the handle (LPHANDLE) of the block
of memory that is to be locked

DWORD dwsSize New size of block

Return value: CQ_SUCCESS or a non-zero value.

Important: Do not attempt to change the size of a
locked block.

Resizes at high
end: The block grows or shrinks at the high end. Any new space
is not initialized.

Caution for Windows developers: This routine uses the
Windows routine GlobalReAlloc. Therefore, the handle
passed may change. MMResizeHandle will update the
handle if it changes.

Adobe PageMaker Software Development Kit 66

Memory-Manager Routines for Loadable Plug-ins

MMUnlock

voi d MVUnl ock(hMem)
Unlocks a block that was locked by MMLock.

Type Parameter Description

HANDLE hMem Handle to be unlocked

Return value: None.

Lock count: Windows keeps track of the number of times a block of
memory is locked; the Macintosh does not. Therefore, to
free a block of memory in Windows, a plug-in must unlock
the block the same number of times it locked it. On the
Macintosh, a plug-in need unlock a locked block only once
to free it, regardless of the number of times it was locked.

When writing portable code, it is better to pass handles to
underlying service routines that lock and unlock memory
blocks than to pass locked handles or pointers.

Example

Here is a sample use of this routine (for a more complete example, see the
sample code in the descriptions of MMAIloc, MMFree, and
MMResizeHandle):

MMUnl ock(hError);

Adobe PageMaker Software Development Kit 67

Macros

The macros included with this SDK move data into and out of the correct
fields of the parameter block or data buffer. We have provided these macros
to make it easier for you to develop a plug-in. In PageMakerUtils.c, a
number of these macros have been replaced by actual functions of the same
name, providing type safety, reduced chance for side-effect errors, and
smaller executables.

This chapter documents only the most frequently used macros. Refer to
PageMakerPBMacros.h for information about other macros included in this
SDK.

Adobe PageMaker Software Development Kit 68

Macros

Macro locations

All but two of the macros are included in PageMakerTypes.h, which you'll
find in the Ink folder. The source code for both LPGetString() and
LPPutString() is contained in CQUtils.c in the “Src” folder.

Finding descriptions
For easy reference, the macros are listed alphabetically in this chapter. The
list below groups the macros by function:

Move binary values in and out of data buffers:
LPGetLong

LPGetShort

LPGetString

LPPutLong

LPPutShort

LPPutString

Move data in and out of the parameter block for loading, invoking,
unloading, cleanup, and shutdown:

PBGetID
PBGetOpCode
PBGetPluginData
PBSetErrMessage
PBSetPluginData

Move data in the binary format in and out of the parameter block when
sending commands and queries:

PBBinCommand
PBBinCommandByShortValue
PBBinCommandByLongValue
PBBinQuery
PBBinQueryWithParms
PBGetReplyData

Move data in the text format in and out of the parameter block when
sending commands and queries:

PBGetReplyData
PBTextCommand
PBTextQuery
PBSetReplyUnits
PBSetRequestUnits
Provide functionality to one of the other macros:
PBClearReplyBlock
PBClearRequestBlock
PBSetOpCode
PBSetReplyBlock
PBSetRequestBlock

Adobe PageMaker Software Development Kit 69

Macros

LPGetHandle

HANDLE LPGet Handl e(&v, pSrc)

Extracts a handle from a data block and returns a value indicating the
amount to increment the pointer.

Type Parameter Description
HANDLE &v Variable to contain the handle
long pSrc Pointer to data

Return value: Number of bytes copied [sizeof(HANDLE)].

See also: LPGetLong
LPGetShort
LPGetString
LPPutHandle
LPPutShort
LPPutLong
LPPutString

Adobe PageMaker Software Development Kit 70

LPGetLong

Macros

short LPGet Long(&v, pSrc)

Gets a long value from a data block and returns a value indicating the
amount to increment the pointer.

Type Parameter Description
long &v Variable to contain the long value
long pSrc Pointer to data

Return value:

Using a handle:

See also:

Number of bytes copied [sizeof(long)].

The pSrc parameter can be a handle, but you must lock the
handle first and use its pointer in the macro.

LPGetHandle
LPGetShort
LPGetString
LPPutHandle
LPPutShort
LPPutLong
LPPutString

Adobe PageMaker Software Development Kit 71

Macros

short LPGetShort(&v,pSrc)

short LPGet Short (&v, pSrc)

Extracts a short value from a data block and returns a value indicating the
amount to increment the pointer.

Type Parameter Description
short &v Variable to contain the short value
long pSrc Pointer to data

Return value:

Using a handle:

See also:

Number of bytes copied [sizeof(short)].

The pScr parameter can be a handle, but you must lock the
handle first and use its pointer in the macro.

LPGetHandle
LPGetLong
LPGetString
LPPutHandle
LPPutShort
LPPutLong
LPPutString

Adobe PageMaker Software Development Kit 72

LPGetString

Macros

short LPGetString(pDst, pSrc, |en)

Gets a string from a data block and returns a value indicating the amount to
increment the pointer.

Type Parameter Description

LPSTR pDst Pointer to the destination string
LPVOID pSrc Pointer to data

short len Maximum length of data buffer

Return value:

Using a handle:

See also:

Number of bytes copied, including the null-terminator
and any pad bytes necessary to align the next field with
the word boundary.

The pSrc parameter can be a handle, but you must lock the
handle first and use its pointer in the macro.

LPGetHandle
LPGetLong
LPGetShort
LPPutHandle
LPPutLong
LPPutShort
LPPutString

Adobe PageMaker Software Development Kit 73

LPPutHandle

HANDLE LPPut Handl e(pDst, v,)

Macros

Places a handle in a data block and returns a value indicating the amount to
increment the pointer.

Type Parameter Description
long pDst Pointer to data
HANDLE v Handle to append to data buffer

Return value:

See also:

Number of bytes copied [sizeof(HANDLE)].

LPGetHandle

LPGetLong
LPGetShort
LPGetString
LPPutShort
LPPutLong
LPPutString

Adobe PageMaker Software Development Kit

74

LPPutLong

Macros

short LPPut Long(pDst, V)

Places a long value in a data block and returns a value indicating the
amount to increment the pointer.

Type Parameter Description
long pDst Pointer to the destination buffer
long v Value to append to data buffer

Return value:

Using a handle:

See also:

Number of bytes copied [sizeof(long)].

The pDst parameter can be a handle, but you must lock
the handle first and use its pointer in the macro.

LPGetHandle
LPGetLong
LPGetShort
LPGetString
LPPutHandle
LPPutShort
LPPutString

Adobe PageMaker Software Development Kit 75

LPPutShort

Macros

short LPPut Short (pDst, V)

Places a short value in a data block and returns a value indicating the
amount to increment the pointer.

Type Parameter Description
long pDst Pointer to the destination buffer
short v Value to append to data buffer

Return value:

Using a handle:

See also:

Number of bytes copied [sizeof(short)].

The pDst parameter can be a handle, but you must lock
the handle first and use its pointer in the macro.

LPGetHandle
LPGetLong
LPGetShort
LPGetString
LPPutHandle
LPPutLong
LPPutString

Adobe PageMaker Software Development Kit 76

LPPutString

Macros

short LPPut String(pDst, pSrc)

Places a string in a data block and returns a value indicating the amount to
increment the pointer.

Type Parameter Description
LPVOID pDst Pointer to the data block
LPSTR pSrc Pointer to string to append to data block

Return value:

Using a handle:

See also:

Number of bytes copied, including the null-terminator
and any pad bytes necessary to align the next field with
the word boundary.

The pDst parameter can be a handle, but you must lock
the handle first and use its pointer in the macro.

LPGetHandle
LPGetLong
LPGetShort
LPGetString
LPPutHandle
LPPutLong
LPPutShort

Adobe PageMaker Software Development Kit 77

Macros

PBBinCommand

PVErr PBBi nConmand(| pPB, op, sy, hp, sz)

Issues a command to PageMaker using the binary format. Use this macro for
commands that have more than one parameter.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

short op Command operation code, or binary ID (e.g.,
pm_open)

short sy Reference style of the hp parameter, either

kRSPointer or kRSHandle

pointer or handle hp Pointer or handle (as specified by the sy
parameter) to the values for the parameter
block

short sz Size of data referenced by the hp parameter

Return value:

Binary ID:

Example

CQ_SUCCESS or a non-zero return code.

The command operation code, or binary ID, is the
command name preceded by pm_. For example, the binary
ID for the Close command is pm_close. Each binary ID is
also listed in the header file PageMakerCommands.h.

/**[rﬂc***

* DESCRI PTI ON:

Draws a box. Desel ects anything selected first.

**rT] **/

PVErr Box(sPMPar anBl ockPtr | pPar anBl k)

{
PMRect rBox;

PBBi nComand(| pPar anBl k, pm desel ect, KRSNul | , NULL, NULL) ;

/1 de-sel ect anything sel ected.

PBBi nComrand(| pPar anBl k, pm _box, kRSPoi nt er,

PVSet Rect (& Box, (2*I NCH), (3*1 NCH), (4*1 NCH), (5*I NCH)),
si zeof (PMRect)) ;

PBBi nComand(| pPar anBl k, pm col or, kRSPoi nt er, " Red”, 4) ;

/1 4 = strlen(“Red”) +1

return CQ_SUCCESS,

See also:

PBBinCommandByShortValue
PBBinCommandByLongValue
PBBinQuery
PBTextCommand
PBTextQuery

Adobe PageMaker Software Development Kit 78

Macros

PBBinCommandByShortValue

PVEr r PBBi nConmandBy Shor t Val ue(| pPB, op, v)

Issues a command to PageMaker using the binary format. Use this macro
only for commands that have a single, short parameter.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

short op Command operation code, or binary ID (e.g.,
pm_open)

short v Parameter

Return value:

Binary ID:

Commands with
varying number of
parameters:

Example

CQ_SUCCESS or a non-zero return code.

The command operation code, or binary ID, is the
command name preceded by pm_. For example, the binary
ID for the Close command is pm_close. Each binary ID is
also listed in the header file PageMakerCommands.h.

Use this macro only for commands with a single, short
parameter. Do not use it for commands for which the
number of parameters can vary (e.g., Tabs). If a command
generally has more than one parameter, PageMaker
always expects a pointer or handle to the parameters,
even if you specify the kRSValue constant in the
abReplyData.rsStyle field.

/**[nTc***

* Redr awOn
* DESCRI PTI ON:

*This turns redraw back on. It will also update any outstandi ng

*regions that need to be redrawn.

**rrl **/

RC Redr awOn(sPMPar anBl ockPtr | pPar anBl k)

{

PBBi nCommandBy Short Val ue(l pParanBl k, pmredraw, 1);

return CQ_SUCCESS;

}

See also:

PBBinCommand
PBBinCommandByLongValue
PBBinQuery
PBTextCommand
PBTextQuery

Adobe PageMaker Software Development Kit 79

Macros

PBBinCommandByLongValue

PVEr r PBBi nConmandByLongVal ue(| pPB, op, | v)

Issues a command to PageMaker using the binary format. Use this macro
only for commands that have a single, long parameter.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

short op Command operation code, or binary ID
(e.g., pm_open)

long Iv Parameter

Return value:

Binary ID:

Commands with
varying number of
parameters:

See also:

CQ_SUCCESS or a non-zero return code.

The command operation code, or binary ID, is the
command name preceded by pm_. For example, the binary
ID for the Close command is pm_close. Each binary ID is
also listed in the header file PageMakerCommands.h.

Use this macro only for commands with a single, long
parameter. Do not use it for commands for which the
number of parameters can vary. If a command generally
has more than one parameter, PageMaker always expects
a pointer or handle to the parameters, even if you specify
the kRSValue constant in the abReplyData.rsStyle field.

PBBinCommand
PBBinCommandByShortValue
PBBinQuery
PBTextCommand
PBTextQuery

Adobe PageMaker Software Development Kit 80

PBBinQuery

PVErr PBBi nQuery(Il pPB, op, rsy, r, rsz)

Macros

Issues a query to PageMaker using the binary format. Use this macro for
queries that have no associated parameters.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

short op Query operation code, or binary ID (e.g.,
pm_open)

short rsy Reference style for the r parameter (if null,
PageMaker allocates the buffer for the reply
data)

pointer or handle r Pointer or handle (as specified by the rsy
parameter) to the buffer for reply data (null if
rsy is null)

short rsz Maximum size of reply data (NULL if ris a
handle)

Return value:

Binary ID:

CQ_SUCCESS or a non-zero return code.

The query operation code, or binary ID, is the query name

preceded by pm_. For example, the binary ID for the
GetLineStyle query is pm_getlinestyle. Each binary ID is
also listed in the header file PageMakerCommands.h.

See also:

PBBinQueryWithParms

“Sending queries to PageMaker” in Chapter 3

Adobe PageMaker Software Development Kit

81

Macros

PBBinQueryWithParms

PVErr PBBi nQuer yW t hPar ms(| pPB, op, sy, hp, sz, rsy, r,rsz)

Issues a query to PageMaker using the binary format. Use this macro for
queries that have parameters.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

short op Query operation code, or binary ID (e.g.,
pm_open)

short sy Reference style of the hp parameter, either
kRSPointer or kRSHandle

pointer or handle hp Pointer or handle (as specified by the sy
parameter) to the values for the parameter
block

short sz Size of data referenced by the hp parameter

short rsy Reference style for the r parameter (if NULL,
PageMaker allocates the buffer for the reply
data)

pointer or handle r Pointer or handle (as specified by the rsy
parameter) to the reply values (NULL if rsy is
NULL)

short rsz Maximum size of reply data for pointer (NULL if

r is a handle)

Return value: CQ_SUCCESS or a non-zero return code.

Binary ID: The query operation code, or binary ID, is the query name
preceded by pm_. For example, the binary ID for the
GetLineStyle query is pm_getlinestyle. Each binary ID is
also listed in the header file PageMakerCommands.h.

See also: PBBinQuery
“Sending queries to PageMaker” in Chapter 3

Adobe PageMaker Software Development Kit 82

Macros

PBClearReplyBlock

voi d PBC ear Repl yBl ock(| pPB)

Clears the reply fields of the parameter block, namely: abReplyData.lpData,
abReplyData.ulSize, abReplyData.reStyle, abReplyData.pmuUnits.

Type Parameter Description
sPMParamBlockPtr IpPB Pointer to the reply block
Return value: None
Used by other
macros: PBTextCommand
PBBinCommandByShortValue
PBBinCommandByLongValue
PBBinCommand
See also: PBClearRequestBlock

PBTextCommand
PBBinCommandByShortValue
PBBinCommandByLongValue
PBBinCommand

Adobe PageMaker Software Development Kit 83

PBClearRequestBlock

voi d PBC ear Request Bl ock(| pPB)

Clears the request fields of the parameter block, namely:
abRequestData.lpData, abRequestData.ulSize, abRequestData.reStyle,
abRequestData.pmuUnits.

Macros

Type Parameter Description
sPMParamBlockPtr IpPB Pointer to the parameter block
Return value: None
Used by other
macros: PBBinQuery
See also: PBClearReplyBlock

PBBinQuery

Adobe PageMaker Software Development Kit

84

PBGetPluginData

HANDLE PBGet Pl ugi nDat a(| pPB)

Macros

Gets the handle to the plug-in’'s data from the pluginData field of the

parameter block.

Type

Parameter

Description

sPMParamBlockPtr

IpPB

Pointer to the parameter block

Return value:

Example

Handle to the plug-in‘s data.

PVErr DoLoad(sPMPar anBl ockPtr | pPar anBl k)

{
HANDLE hWyData = PBGet Pl ugi nDat a(| pPar anBl k) ;

short *ps;

if (!hMyData) { // NULL if plug-in's never been call ed.

/1 Al'locate pluginData:
/1 Maintains |ast count of boxes across a page, used by BoxTest

/I exanpl e.

hMyDat a = MVAI | oc(SI ZE_OF _DATA);
PBSet Pl ugi nDat a(| pPar anBl k, hMyDat a) ;

ps = (short*) MMLock(hMyDat a) ;

*ps = DEF_NUM BOXES; // default nunber of boxes for dial og.
MMUnl ock(hMyDat a) ;

}

return CQ _SUCCESS;

}

See also: PBSetPluginData
“Parameter block structure” in Chapter 3

Adobe PageMaker Software Development Kit 85

PBGetID

ULONG PBGet | O(| pPB)

Macros

Gets the plug-in identifier (function ID) from the ulSubCode field of the
parameter block. Use this macro during invocation if the plug-in library

contains more than one plug-in.

Type Parameter

Description

sPMParamBlockPtr IpPB

Pointer to the parameter block

Return value: The function ID of the requested plug-in.

Example

PVErr Dol nvoke(sPMPar anBl ockPtr | pPar anBl k)

{

switch(PBGetld(l pParanBl k))

{

case kPubl nf o:

PVErr = Pl acePubl nf o(l pPar anBl k) ;

br eak;

case kVi ewl00:

PVErr = Vi ewl0O0(| pPar anBl k) ;

br eak;
def aul t:

PMErr = RC_FAI LURE;

br eak;
}
return CQ_SUCCESS,
}

See also: “Registration” in Chapter 2

Adobe PageMaker Software Development Kit

86

Macros

PBGetOpCode

PMOPCODE PBGet OpCode(| pPB)

Gets the constant for the requested operation from the opCode field of the
parameter block.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

Return value: One of the following constants:
kPMLoad
kPMInvoke
kPMUnload
kPMCleanup
kPMShutdown

Example

pascal PMerr mai n(sPMPar anBl ockPtr | pPar anBl k)
{
PVErr rc;
swi tch (PBGet OpCode(Il pParanBl k)) {
case kPM.oad:
PVErr = DoLoad(| pPar anBl k) ;
br eak;
case kPMunl oad:
PVErr = DoUnl oad(| pPar anmBl k) ;
br eak;
case kPM eanup:
PMErr = Dod eanup(| pParanBl k) ;
br eak;
case kPMshut down:
PVErr = DoShut down(| pPar anBl k) ;
br eak;

case kPM nvoke:

PVErr = Dol nvoke(Il pPar anmBl k) ;
br eak;
defaul t:

PVErr = RC_FAI LURE;
br eak;

}

return rc;

}

See also: PBSetOpCode

Adobe PageMaker Software Development Kit 87

Macros

PBGetReplyData

LPVO D PBGet Repl yDat a(| pPB)
Extracts the data reference from the reply section of the parameter block.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to parameter block

Return value: A pointer, handle, or value (as specified in the reference
style in abReplyData.rsStyle)

IpData: abReplyData.lpdata can contain a value (if the data can fit
in the 4-byte field) or a handle or pointer to the data.

Adobe PageMaker Software Development Kit 88

PBSetErrMessage

voi d PBSet Err Message(| pPB, hMsQ)

Macros

Puts the handle to the plug-in’s error-message string into the hszErrMessage
field of the parameter block.

Type Parameter Description
sPMParamBlockPtr IpPB Pointer to the parameter block
HANDLE hMsg Handle to the null-terminated error-message
string
Return value: None

Non-zero return
code required:

See also:

PageMaker displays the error message if the plug-in
returns a non-zero return code from an operation. See
“Error and status codes” in Chapter 2 for information on
the format of the error string.

“Parameter block structure” in Chapter 3

Adobe PageMaker Software Development Kit

89

Macros

PBSetPluginData

voi d PBSet Pl ugi nDat a(l pPB, h)

Puts the handle to the plug-in’s data into the pluginData field of the
parameter block.

Type Parameter Description
sPMParamBlockPtr IpPB Pointer to the parameter block
HANDLE h Handle for the plug-in's data

Return value: None

Use only if plug-in
needs data

between use: Use this macro when the plug-needs to maintain data
between invocations. The data is not preserved when

PageMaker shuts down.

Example

PVErr DoLoad(sPMPar anBl ockPtr | pPar anBl k)

{
HANDLE hMyDat a = PBGet Pl ugi nDat a(| pPar anBl k) ;
short *ps;

if (!hMyData) { // NULL if plug-in's never been call ed.

/'l Allocate pluginData:
/1 Maintains |ast count of boxes across a page, used by BoxTest

/| exanpl e.

hMyData = MMAI | oc(SI ZE_OF_DATA) ;
PBSet Pl ugi nDat a(| pPar anBl k, hMyDat a) ;

ps = (short*)MMLock(hMyDat a) ;
*ps = DEF_NUM BOXES; // default nunber of boxes for dial og.
MVUNI ock(hMyDat a) ;

}
return CQ_SUCCESS;

See also: PBGetPluginData
“Parameter block structure” in Chapter 3

Adobe PageMaker Software Development Kit

90

PBSetOpCode

voi d PBSet OpCode(| pPB, op)

Macros

Puts the constant for the requested operation into the opCode field of the

parameter block.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

short op Constant for the desired operation
Return value: None

Used by other
macros:

See also:

PBBinCommand

PBBinCommandByShortValue
PBBinCommandByLongValue

PBBinQuery

PBBinQueryWithParms

PBGetOpCode
PBBinCommand

PBBinCommandByShortValue
PBBinCommandByLongValue

PBBinQuery

PBBinQueryWithParms

Adobe PageMaker Software Development Kit

91

PBSetReplyBlock

voi d PBSet Repl yBl ock(| pPB, rs,

Macros

Puts the abReplyData values in the reply fields of the parameter block,
specifically: abReplyData.lpData, abReplyData.ulSize, and
abReplyData.reStyle.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

short rs Reference style of the pv parameter, either
kRSPointer or kRSHandle

pointer or handle pv Pointer or handle (as specified by the rs
parameter) to the reply data

short sz Maximum size of reply data

Return value: None

Used by other
macros:

See also:

PBClearReplyBlock
PBTextQuery
PBBinQuery

PBBinQueryWithParms.

PBClearReplyBlock
PBSetReplyUnits
PBTextQuery
PBBinQuery

PBBinQueryWithParms
“Sending queries to PageMaker” in Chapter 3

Adobe PageMaker Software Development Kit

92

PBSetReplyUnits

voi d PBSet Repl yUni ts(I| pPB, u)

Puts the unit constant to be used for reply data into the

abReplyData.pmuUnits field of the parameter block (for replies in the text

format only).

Type

Parameter

Description

sPMParamBlockPtr

IpPB

Pointer to the
parameter block

short

Unit constant for reply
data:

kMUNull

kMUInches
kMUDecInches
kMUCentimeters
kMUPicas

kMUPoints

Return value:

Units for text

None

Macros

format only: PBSetReplyUnits sets the reply units for replies in the text

Example

format only. Binary replies are always in twips,
PageMaker’s internal measurement system.

PVErr RunSt or y(sPMPar anBl ockPt r | pPar anBl k)

{
RC rcVal = CQ SUCCESS;/* return code */

USHORT wst yl e;

LPSTR | pStory;

SHORT ar Parns| 2] ;

/* set up request and reply units to be the same.*/

PBSet Request Uni t s(| pPar anBl k, kMJl nches) ;

PBSet Repl yUni t s(| pParanBl k, kMJ nches);

/* set up specifics for getStoryText query.*/

arParns[0] = 0; /* get raw text */

arParns[1] = 3; /* substitute for non-printing chars */

if (!(PBBi nQueryW thParns(| pParanBl k, pm getstorytext, kRSPointer,
ar Parns, sizeof (arParns), kRSPointer, NULL, MAXSTORYSIZE)) &&

(I pStory = PBGet Repl yDat a(l pParanBl k)))

{

/* use buffer supplied by PMto hold text but don't purge it.*/

wStyl e = ((PBGet Repl yRef Styl e(l pParanBl k)) & kRef Styl eMask) |
kRFCant Pur ge;

PBSet Request Ref St yl e(| pParanBl k, wStyl e);

}

el se

Adobe PageMaker Software Development Kit

93

Macros

/1l do something el se, no selection.
}
/* send story back as text conmands. */
if (!'rcval)
PBText Conmand(| pPar anBl k, kRSPoi nter, |pStory);
return (rcVval);
}

See also: PBSetReplyBlock
“Sending queries to PageMaker” in Chapter 3

Adobe PageMaker Software Development Kit 94

PBSetRequestBlock

voi d PBSet Request Bl ock(| pPB, rs, pv,

Macros

sz)

Puts the abReplyData values in the reply fields of the parameter block,
specifically: abRequestData.lpData, abRequestData.ulSize, and

abRequestData.reStyle.

Type Parameter Description

sPMParamBlockPtr IpPB Pointer to the parameter block

short rs Reference style of the pv parameter: kRSPointer
or kRSHandle

pointer or handle pv Pointer or handle (depending upon the rs
parameter) to the request data

short sz Size of the request data

Return value:

Used by other
macros:

See also:

None

PBClearRequestBlock
PBBinCommand
PBBinCommandByShortValue
PBTextCommand
PBTextQuery

PBClearRequestBlock
PBBinCommandByShortValue
PBBinCommand
PBSetRequestUnits
PBTextCommand

PBTextQuery

“Sending commands to PageMaker” in Chapter 3
“Sending queries to PageMaker” in Chapter 3

Adobe PageMaker Software Development Kit

95

Macros

PBSetRequestUnits

voi d PBSet Request Units(I pPB, u)

Puts the unit constant to be used for request data into the
abRequestData.pmuUnits field of the parameter block (for requests in the
text format only).

Type Parameter Description
sPMParamBlockPtr IpPB Pointer to the parameter block
short u Unit constants for request data:
kMUNull
kMUInches

kMUDecInches
kMUCentimeters
kMUPicas
kMUPoints

Return value: None

Units for text

format only: PBSetRequestUnits sets the request units for replies in the

text format only. Binary requests are always in twips,
PageMaker’s internal measurement system.

Example

PVErr RunSt or y(sPMPar anBl ockPt r | pPar anBl k)

{
RC

rcVal = CQ SUCCESS;/* return code */

USHORT wStyl e;

LPSTR | pStory;

SHORT ar Parns[2] ;

/* set up request and reply units to be the same.*/

PBSet Request Uni t s(| pPar anBl k, kMJl nches) ;

PBSet Repl yUni t s(| pParanBl k, kMJ nches);

/* set up specifics for getStoryText query.*/

ar Par ns[0]

ar Par ns[1]

0; /* get raw text */

3; /* substitute for non-printing chars */

if (!(PBBi nQueryW thParns(| pParanBl k, pm getstorytext, kRSPointer,

el se

ar Parns, sizeof (arParns), kRSPointer, NULL, MAXSTORYSIZE)) &&

(I pStory = PBGet Repl yDat a(l pParanBl k)))

{

/* use buffer supplied by PMto hold text but don't purge it.*/

wStyl e = ((PBGet Repl yRef Styl e(l pParanBl k)) & kRef Styl eMask) |
kRFCant Pur ge;

PBSet Request Ref St yl e(| pParanBl k, wsStyl e);

}

{

/1 do sonething else, no selection.

Adobe PageMaker Software Development Kit 96

Macros

}
/* send story back as text commands.*/
if (!rcval)
PBText Command(| pPar anBl k, kRSPoi nter, |pStory);

return (rcval);

}

See also: PBSetRequestBlock
“Sending commands to PageMaker” in Chapter 3
“Sending queries to PageMaker” in Chapter 3

Adobe PageMaker Software Development Kit 97

Macros

PBTextCommand

PVErr PBText Command(| pPB, sy, tx)

Issues a command to PageMaker using the text format.

Type Parameter Description
sPMParamBlockPtr IpPB Pointer to the parameter block
short sy Reference style of the tx parameter, either

kRSPointer or kRSHandle

pointer or handle tx Pointer or handle (as specified by the sy
parameter) to a null-terminated string
containing the values for the parameter block

Return value: None

Example
PVErr RunSt or y(sPMPar anBl ockPt r | pPar anBl k)
{
RC rcVal = CQ SUCCESS; /* return code */
USHORT wstyl e;
LPSTR | pStory;
SHORT ar Parns[2] ;
/* set up request and reply units to be the same.*/
PBSet Request Uni t s(| pPar anBl k, kMJl nches) ;
PBSet Repl yUni t s(| pParanBl k, kMJ nches);
/* set up specifics for getStoryText query.*/

0; /* get raw text */

ar Par ns[0]

ar Par ns[1] 3; /* substitute for non-printing chars */

if (!(PBBi nQueryW thParns(| pParanBl k, pm getstorytext, kRSPointer,
ar Parns, sizeof (arParns), kRSPointer, NULL, MAXSTORYSIZE)) &&
(I pStory = PBGet Repl yDat a(l pParanBl k)))
{
/* use buffer supplied by PMto hold text but don't purge it.*/
wStyl e = ((PBGet Repl yRef Styl e(l pParanBl k)) & kRef Styl eMask) |

kRFCant Pur ge;

PBSet Request Ref St yl e(| pParanBl k, wsStyl e);

}

el se
{

/1l do something el se, no selection.

}

/* send story back as text conmands.

*/
if (!rcval)

PBText Conmand(| pPar anBl k, kRSPoi nter, |pStory);

return (rcval);

Adobe PageMaker Software Development Kit 98

Macros

See also: PBBinCommand
PBBinCommandByShortValue
PBBinCommandByLongValue
PBBinQuery
PBTextQuery

Adobe PageMaker Software Development Kit 99

Macros

PBTextQuery

PVErr PBText Query(|l pPB, sy, tx, rsy,r,rsz)

Issues a query to PageMaker using the text format.

Type Parameter Description
sPMParamBlockPtr IpPB Pointer to the parameter block
short sy Reference style for the tx parameter, either

kRSPointer or kRSHandle

pointer or handle tx Pointer or handle (as specified by the sy
parameter) to a null-terminated string that
contains the values for the parameter block

short rsy Requested style for reply
pointer or handle r Pointer or handle to the reply data block
short rsz Maximum size of query reply data

Return value: None

Getting replies in
the text format: The binary format is the default reply format for text

queries, and the only format for replies from binary
queries. When using the text format, you can request that
the replies be in the text format by including a flag,
kXRFText, with the reply style constant in
abReplyData.rsStyle. (kXRFText is defined in
PageMakerTypes.h.)

Example

flag = kRSHandl e | kXRFText // Pass back by handl e as ASCI| text

If you include kXRFText with a binary query, PageMaker ignores your
request. (Note that in cases where the actual return value of a binary query
is text—such as a publication name, a font name, or story text—PageMaker
returns a null-terminated string.) The examples below illustrate how to
specify formats for return values.

rcVal = PBText Query(l pParanmBl k, //Gets object list for current page
kRSPoi nter, “getobjectlist”, //By default, return is in binary
kRSHandl e, NULL, MAXSIZE); //format for text and binary queries

rcVal = PBText Query(l pParanBl k, //Gets object Iist for current page
kRSPoi nter, “getobjectlist”,

kRSHandl e | kRFBi nary, //specifies binary format for results

NULL, MAXSI ZE);

rcVal = PBText Query(l pParanmBl k, //Gets object list for current page
kRSPoi nter, “getobjectlist”,

kRSHandl e | kXRFText, //specifies text format for results

NULL, MAXSI ZE);

rcVal = PBBi nQuery(l pParanBl k, //Binary query reply is always in tw ps

Adobe PageMaker Software Development Kit 100

Macros

pm get obj ect li st
kRSHandl e | kXRFText, //PageMaker ignores kXRFText flag
NULL, MAXSI ZE);

See also: PBBinCommand
PBBinCommandByShortValue
PBBinCommandByLongValue
PBBinQuery
PBTextCommand
“Sending queries to PageMaker” in Chapter 3

Adobe PageMaker Software Development Kit 101

User Interface Design
Guidelines

In general, the user interface design of your plug-in is completely up to you.
However, we recommend using PageMaker as a model. By basing your plug-
in interface on the PageMaker interface, you visually tie your plug-in and its
functions more closely to PageMaker and provide a more consistent working
environment for users.

This chapter outlines some of the guidelines we used to develop the
PageMaker interface. This chapter also provides some general development
tips you may want to use, especially if your users may be working with
multiple plug-ins.

For more interface development information, refer to Inside Macintosh by
Apple Computer, Inc., and the “Windows User Interface Guidelines” in SDK
Guide for Microsoft Windows and Windows NT.

Adobe PageMaker Software Development Kit 102

User Interface Design Guidelines

General development tips

The following tips may help you design and implement a more efficient
interface for your plug-in.

Simplify the plug-ins menu

Remember that the PageMaker Plug-ins menu can become quite long,
depending on the number of plug-ins the user installs. Here are some tips to
help keep the menu uncluttered:

e If you plan to write several related plug-ins, we recommend that you not
list each plug-in separately on the plug-ins menu. Instead, combine them
into a single plug-in and let the user access the various options in a
dialog box. For example, if you plan to write a set of plug-ins that create
automatic headers and footers, don’t list “Automatic header...” and
“Automatic footer...” on the PageMaker Plug-ins submenu. Instead, use
just one command, “Automatic Headers and Footers...” that opens into a
dialog box containing all available options for automating headers and
footers.

e If you plan to write several plug-ins that perform unrelated functions,
put them in separate plug-ins. That way, users can install only those
plug-ins they need. (If all your plug-ins are in the same file, the user
must install all the plug-ins.)

Create consistent icons

To maintain a consistent desktop interface with other plug-ins, base icons
for your plug-ins on the PageMaker plug-ins icon.

Follow existing standards and usage

Take advantage of the user’s knowledge of existing methods for performing
operations and conventions for naming menu items.

e Support existing or de facto standard shortcuts:

Item Windows Macintosh
Cut Control+X Command+X
Copy Control+C Command+C
Paste Control+V Command+V
Undo Control+Z Command+Z
Cancel Esc Command+. (period)
Print Control+P Command+P
Quit Control+Q Command+Q
New Control+N Command+N
Open Control+0O Command+0
Save Control+S Command+S
Place Control+D Command+D

Adobe PageMaker Software Development Kit 103

User Interface Design Guidelines

Designing dialog boxes

As a rule, all dialog boxes must have:
e A title.
e An "OK" or action (for example, “Print”) button.

e A “"Cancel” button.

In general, the rest of the dialog box design is up to you. However, to
provide a consistent interface (and one with which the user is already
familiar), we recommend that you make your plug-in dialog boxes look as
similar to PageMaker’s as possible.

Common dialog boxes

Where possible, use the common dialog boxes provided in Windows and on
the Macintosh. Both platforms offer standard dialog boxes for opening and
saving files.

Note: For Windows common dialog boxes, allow space for the button added
when Workgroup for Windows is active.

PageMaker dialog box guidelines
Here are the guidelines we use for developing dialog boxes:

e Position dialog boxes and alerts 3/10 of the way down the Macintosh
screen and 2/5 of the way down the PC screen.

e Use Chicago 12 and Geneva 9 for text on the Macintosh and Helv 8 and
Helv 7 for text on the PC. Typically, the smaller font sizes are used for
labels, group box titles, and message lines in complex dialog boxes. See
the Links dialog box in PageMaker for an example.

e Capitalize only the first letter of the first word in a dialog box title,
option name, control group name, or group box title.

e Run a 2-pixel rule from the left edge of the title to 18 pixels from the
left edge of the OK button.

e Leave 6 pixels between the baseline of the title and the top of the rule,
and 12 pixels between the bottom of the rule and the top of the first
letter of the option immediately below.

e Leave a 12-pixel margin on all sides.

Only the first letter of first word . Margin is 12 pixels
in a control is capitalized Rule under title
is 2 pixels
/
Print document /
Print to: |Non-PuslSclipt printer on LPT2: |i| [eoiats -
a _l:ancel
[Rexerse order
Copies: [1_] L] Proot
r Pages
Radio b d & AN Print. @ Both
adio buttons an Al Even __l]pliuns
igegﬁggﬂish‘ggm{ FLC Ranges: h O 0dd
Color
H{ [Print blank pages —
r Book Ori ion — Reset
Border is used [#nt o publicstions i bask
for aligning [tism popss setfings of vach pabdicliion
group boxes
Controls on the left side of gg’;ggfg Sh,-agrﬁ Controls within dialog
the dialog boxare aligned box are aligned vertically

with the dialog box title

About pixels
Pixels—as defined by the 13" Macintosh screen or a VGA screen for the PC—
are used as the measurement system to describe spacing guidelines. The

Adobe PageMaker Software Development Kit 104

User Interface Design Guidelines

purpose in being so specific is to aid in determining control placement.
However, perceived distance may be preferable to pixel specification,
especially for higher resolution screens. So use what's reasonable; for
example, 12 pixels or approximately 3/16 of an inch.

e Offset nested dialogs down and right from the dialog that invoked
them. Typically, it's better to cover the parent dialog’s OK and Cancel
buttons (or similar controls) to minimize confusion for the user.

e Use selectable dialog boxes to present groups of related options that
can’t all fit in one dialog box. For example, the PageMaker 6.0 Print
dialog box contains a list of push-buttons along the right side. Selecting
a button causes the related items to appear in the dialog box.

Related controls are Option buttons are stacked under a

grouped inside a 2-pixel rule below the “Cancel” button
1-pixel bordered box

Paper

Print

Cermt]

™ Paper
Size: Letter

85 x 11 inches Cancel

*
Source: |Cassette *

Print area: 7.986 x 10.486 inches

D Center page in print area
o

i
[Scale Duplex

® H @ g Reset

" Reduce to fit O

O Thumbnails: Per page O FRE

Content of the Print dialog box changes .
when “Paper” is selected Button governing currently
active options is grayed ot

Adobe PageMaker Software Development Kit 105

User Interface Design Guidelines

Creating and placing buttons

Here are the guidelines we use for button design:

Center button names within the button, leaving at least 4 pixels
between the button name and the left and right edges of the button.

Make the “OK" or action button (for example, “Print”) the default
button (activated when the user presses the Return or Enter key).
However, message boxes or alerts may designate “Cancel” as the default
when the operation could cause data loss, for example, saving over an
existing document.

Use the initial letter in the button as its mnemonic when possible.

Reinforce the default action button visually with a bold border. On the
Macintosh, its border consists of a 1-pixel rule inside and a 2-pixel rule
outside separated by a 2-pixel space; in Windows, its border is defined
by the standard DEFPUSHBUTTON style.

Set a 1-pixel border around standard (non-default) buttons.
Make all buttons 19 pixels high, measured from the 1-pixel border.

Position the “OK" or action button in the upper-right corner of the
dialog box, directly above the “Cancel” button.

Separate other buttons from the “Cancel” button by stacking them
under a rule that runs the width of the buttons. Use the standard 1-pixel
dotted rule on the Macintosh, and a 2-pixel line in Windows.

Make all buttons the width of the widest non-default button.

Align buttons along the right side with the main dismissal or “Cancel”
button.

Gray out the button currently governing the content of a selectable
dialog box.

Adobe PageMaker Software Development Kit 106

User Interface Design Guidelines

Radio buttons, check boxes, and edit boxes

The Windows and Macintosh platforms provide standard-sized controls for
most dialog box options. If no standards are provided or if you may
determine the size of options, use the following guidelines:

Include a descriptive title above or to the side of all logical sets of
controls (e.g., radio button groups).

Organize related controls within titled boxes. Use a 1-pixel black border
on the Macintosh, and the standard Windows group box on Windows.

Make radio buttons 12 pixels in diameter and check boxes 12 pixels
square.

Size edit boxes to 22 pixels high and wide enough to accommodate the
maximum number of characters the user can enter. When text in the box
is highlighted, separate the edge of the highlight from the edit box
border with 2 pixels of space.

Use a 1-pixel border for radio buttons, check boxes, and edit boxes.

Adobe PageMaker Software Development Kit 107

User Interface Design Guidelines

Option placement guidelines

Here are the guidelines we use for positioning controls within the dialog
box:

Align controls and control labels in the left portion of the dialog box
with the title.

Arrange groups horizontally.
Align options along vertical lines.

Run in the group name with its options, unless the group name is very
long or the option names vary greatly in length. In that case, indent the
option names under the group name.

Left-align all options in a group.

Note: For boxed groups, use the border, rather than the boxed items, to
left-align with the title and other controls.

Adobe PageMaker Software Development Kit 108

User Interface Design Guidelines

Error messages and alerts

Error messages are posted when the user enters invalid data or when the
settings in a dialog box are not within defined ranges. Try to give the user as
much help in solving the problem as possible. Here are some tips for
building dialogs that offer user feedback as well as conform to PageMaker
standards:

Trap errors when the user OKs the dialog box, not when the user is
navigating between options within a dialog box. Though this is the
preferred method, you may need to trap errors immediately in certain
cases, for example, when values in controls are calculated based on
settings in other controls.

Construct error messages and alerts in two parts: a description of the
problem or condition and a statement containing suggested corrective
action or required state (e.g., “Cannot complete Drop-cap operation.
Click text tool in a textblock and try again.”)

Include a “Continue” button rather than an “OK"” button when
applicable. For example, for this message, “Cannot initialize language
dictionaries. No languages supported for hyphenation,” “Continue” is
more appropriate than “Cancel.”

Return to a highlighted field containing the invalid value after the user
accepts or cancels the error message.

Select “Cancel” as the default for potentially destructive actions. For
example, for this message “Delete page and all items on it?” with its
options for “OK"” and “Cancel,” “Cancel” is the default.

List the acceptable range for illegal values or indicate the source of the
problem in the error message text. For example, “-1 not a valid
measurement. Enter a number between 1 and 16.”

Adopt the measurement system in effect when the error is flagged. For
example, an error message would read “Enter a number between 1 and
3 inches” when the selected measurement system is inches and “Enter a
number between 30 and 600 mm"” when in millimeters.

Avoid using words like “fatal” or “bad.” Use “serious” or “important”
instead.

Point user to help when necessary. For example, when corrective action
requires significant instruction, direct the user to the documentation or
to online help.

Adobe PageMaker Software Development Kit 109

User Interface Design Guidelines

Guidelines for making your product easy to localize

PageMaker is distributed in over 20 languages.

A successfully localized product provides more than the ability to translate
text into other languages. Consideration of cultural differences up front can
ease the localization process considerably. Fortunately, the fundamentals of
planning for localizing Windows products are almost identical to planning
for localizing Macintosh products, so you can transfer what you learn when
localizing on one platform to the process on the other platform.

Localizing Windows plug-ins

If you plan to translate your Windows plug-in into different languages, you
can help simplify localization by putting strings in a single resource file.
Tracking the status of one file is much easier than keeping tabs on several
files, each containing different groups of string definitions.

Note: Windows 3.1 and Windows 95 provide resources and language-
sensitive functions that help ensure that your application behaves as
expected in localized versions of Windows.

Organizing your resources

Keep functional code and strings separate. Hard coding strings makes it
impossible to localize without generating a new executable. Instead, use
resources for any information that needs to be modified. On the Macintosh,
the .RSRC contains these items. For Windows applications, the .RC and .DLG
files are used.

Content of resources

Some items requiring localization are obvious, for example, text in menus
and dialog boxes. However, there are additional issues to consider, such as
date format and icons for certain objects. You may discover others during
your localization process. Apple has a “Internationalization Checklist”
document for developers. In addition, the Windows SDK contains a section
on the localization process. You may want to consult these documents for
more information.

Here is a list of items that you should put in resources.

e All text visible on the screen, including menu items, dialog text, error
messages, status line or help information, undo strings, titles and items
listed in palettes, and conditionally displayed items for menus and
dialog boxes (e.g., strings for the PageMaker “Place” dialog box change
depending on the type of file selected).

e Quotation marks or other punctuation and special characters

e Shortcuts and accelerators
Note: When providing translator tables for shortcuts, keep in mind that
the international keyboards have keys in different places than the U.S.

keyboards so that the locations of the VK_OEM keys may change
depending on the keyboard layout chosen by the user.

e Number formats and separators (e.g., commas and decimal marks)
e Currency symbols

e Short and long formats for dates (e.g., 6/22/93 and June 16, 1993) and
provision for European and Non-Gregorian calendars

e Time formats and descriptors (e.g., 12 hr, 24 hr, AM/PM)

Adobe PageMaker Software Development Kit 110

User Interface Design Guidelines

e Address formats, including ZIP codes and phone numbers
e Lengths of strings and text resources

e Text translator tables for character, word, and phrases

e Units of measure

e Graphics and icons, including position and size. Items will change
position and size as they get translated, so do not hard code the location
or extent of any element in the window.

e Word and character boundaries

Note: These delimiters are used in search and replace, sorting, word
wrap, selection, backspacing and delete, and cut and paste operations. If
your plug-in does not perform these operations, you won’t need these
items in the resource.

Providing for translated text

As you create dialog boxes, keep in mind that translated items will almost
certainly grow in size, possibly in all directions. For example, diacritical
marks are widely used outside the United States and may extend up to the
ascent line, “U” and “E,” or down to the descent line, “C.”

Note: Potential grammar issues may affect the size of error messages, so
keep them flexible.

e Design dialog boxes and other elements to give text room to grow up,
down, and sideways. Use this rule of thumb to allocate extra space for

strings:

For this number of English characters Allocate this much additional space
1-10 200%

11-20 100%

21-30 80%

31-50 60%

51-70 40%

70 and above 30%

Note: Do not put text inside an icon. It's unlikely that translated text will fit
within the confines of an icon.

Special considerations
Here are some other items to take into account.

e Determine appropriate settings and use them as the defaults. For
example, page size should default to A4 in products intended for
European English markets.

e Right-to-left and mixed-direction text can cause problems in
justification, cursor positioning, highlighting.

e Restrict use of <Command><Space> (and arrow keys) for Command-key
equivalents since these are used to select keyboards.

Adobe PageMaker Software Development Kit 111

Writing Stand-Alone Plug-ins:
Apple Events and DDE

PageMaker can receive commands and queries via two System 7 Apple Events
on the Macintosh and via Dynamic Data Exchange (DDE) under Windows on
the PC. You use Apple Events and DDE to send commands and queries from a
stand-alone plug-in. This chapter describes how to use Apple Events and DDE
to communicate with PageMaker.

Note: We assume you're familiar with the way Apple Events and the Apple
Event manager work. If you're not, refer to Inside Macintosh,
Interapplication Communication by Apple Computer, Inc. before reading this
chapter.

We also assume you are familiar with the way DDE works. If not, refer to the
SDK Guide for Microsoft Windows and Windows NT.

Adobe PageMaker Software Development Kit 112

Writing Stand-Alone Plug-ins: Apple Events and DDE

About stand-alone plug-ins

A stand-alone plug-in is an independent application that sends commands
and queries to PageMaker via Apple Events or Windows DDE. A stand-alone
plug-in uses the same commands and queries other plug-ins use, the only
difference is that you send them from an external source. This chapter does
not attempt to tell you how to write a stand-alone plug-in. Instead, it tells
you what you need to know to allow your application to communicate with
PageMaker.

A major advantage of a stand-alone plug-in is that it lets you integrate the
functionality of multiple applications. For example, you could write a stand-
alone plug-in that automates the production of a catalog. It could open a
database application, extract any new product descriptions from the catalog
database, and then open PageMaker, locate the previous descriptions in the
catalog, and replace both the descriptions and the images.

Adobe PageMaker Software Development Kit 113

Writing Stand-Alone Plug-ins: Apple Events and DDE

Using Apple Events to communicate with PageMaker

Unlike some applications, PageMaker does not distinguish between
commands and queries at the Apple Event level. Therefore, you can use
either of the two supported events—Do Script and Evaluate Expression—to
send commands and queries to PageMaker. (PageMaker supports both
events to provide compatibility with applications that cannot use these
standard Apple Events interchangeably.)

Addressing events to PageMaker

In general, you can use several methods to address Apple Events to a specific
application: the application signature, the session ID, the target ID, or the
process serial number. The approach depends on the application you're
using. To learn about each method and determine which best suits your
needs, refer to Inside Macintosh, Interapplication Communication.

Note: PageMaker’s application signature is “ALD6."

Required constants

To communicate with PageMaker using AESend, your plug-in must identify

these constants:

Constant

Description

kAEMiscStdSuite = 'misc’

Miscellaneous standard suite

kAEDoScript = 'dosc'

Standard DoScript event (or you can identify
kAEEvaluate below; both are not required)

kAEEvaluate = 'eval'

Standard Eval event (or you can identify
kAEDoScript above; both are not required)

keyAEDirectParameter = '----'

Direct parameter of AEDescriptor

keyErrorNumber = 'erno'

Error number returned from PageMaker

keyErrorString = 'errs'

Error string returned from PageMaker

typeText = 'TEXT'

Raw text data

typelLonglnteger = 'long'

Long integer

Sample code

To see how Apple Events send commands or queries to PageMaker, review

the sample code included in this SDK.

Do script and Evaluate Expression Apple Events

Description

The Do script and Evaluate Expression events send both commands and

queries to PageMaker.

Note: PageMaker does not distinguish between the Do Script and Evaluate
Expression events. PageMaker recognizes both events to accommodate

applications that require both.

Event Do Script Evaluate Expression
Event Class kAEMiscStdSuite="misc' kAEMiscStdSuite="misc'
Event ID kAEDoScript="'dosc' kAEEvaluate='eval'
Keyword Descriptor type Description

Adobe PageMaker Software Development Kit

114

Writing Stand-Alone Plug-ins: Apple Events and DDE

Event Do Script Evaluate Expression

keyAEDirectParameter ='----' typeText= '"TEXT' Required; commands and/or
query

Reply Keyword Descriptor type Description

keyAEDirectParameter="----' typeText="TEXT' PageMaker reply values from
a query

Error Description

errAECantCoerce Could not coerce the object into the required type

errAENoSuchObject Can't find the object referred to by the direct parameter

errAEFail General failure of event

customErr %Anl ecrlror returned by PageMaker when a command or query

aile

Sending commands and queries
When you send commands and queries to PageMaker via an Apple Event:

e Send commands and queries as plain text encapsulated in a descriptor.
PageMaker 6.0 does not support file aliases and object specifiers.

e Send only one query per event. If you send more than one query per
event, only the result of the last query is returned in the reply. You can
send numerous commands in an event.

e Separate commands and queries with a semicolon (;) or new line
character (carriage return). You need not terminate the set of commands
and query with a null character, but can if you prefer.

Note: It is possible to send events to PageMaker faster than PageMaker can
process them. In that case, events may be ignored. To circumvent the
problem, you should always specify a kAEWaitReply in the sendMode
parameter of AESend, even if your plug-in is only sending commands.

PageMaker’s reply to a query

PageMaker uses the reply Apple Event to provide query results or error
information to the application sending the Apple Event. Replies may
contain:

e A query reply (keyAEDirectParameter) if the plug-in sent a query.

e An error number (keyErrorNumber).

e An error string (keyErrorString) if PageMaker can generate a string for
that error code.

Note: If an error occurs, the reply may also contain invalid data in
keyAEDirectParameter. To verify whether the data is valid, make sure the
reply contains keyAEDirectParameter and does not contain the
keyErrorNumber parameter.

A successful query reply in keyAEDirectParameter:

e Is a null-terminated character string.

e Uses a comma to separate values.

HyperCard or SuperCard example
The following HyperCard or SuperCard example creates a simple utility that
threads (joins) the text of two independent text blocks into one story and

Adobe PageMaker Software Development Kit 115

Writing Stand-Alone Plug-ins: Apple Events and DDE

then replaces the second text block in its original position. The utility
consists of a button, which sends the commands and queries to select, join,
and replace the text, and a simple text field, where user instructions are
displayed.

To use this threading utility, you should have a publication open in
PageMaker with at least two stories on the page.

Note: You must use HyperCard version 2.1 or later. Also, program linking
must be active in the Sharing Setup control panel for this example to work.

Stack or project script
The following function is the stack or project script for the utility:
--Threading utility courtesy David Butler
function sendQueryToPM pnscri pt
gl obal PMAPP
-- put PageMaker nanme into variabl e PMAPP
if PMAPP is enpty then
answer program "Sel ect PageMaker fromlist on right:"
if it is enpty then exit sendQueryToPM
put it into PMAPP
end if
request pmnscript from program PVAPP
return it

end sendQueryToPM

Button
The utility has one button named Thread. The script for the button is:
on nouseUp
-- Get coordinates of selected text block
-- Use coordinates later to place text back on page
put sendQueryToPM "get objectloc topleft”) into TLCoords
put sendQueryToPM "get obj ectl oc bottonright") into BRCoords

-- Highlight and cut text from second text bl ock
-- Select first text block

put sendQueryToPM"textedit;selectall;cut;select 1;") into reply

-- Get bottomcorner of first text block

put sendQueryToPM "get obj ectloc bottonright") into BCd

-- Get last character of first text bl ock

put sendQueryToPM "textedit;textcursor +textblock;textselect -char") into
reply

put sendQueryToPM "getstorytext 0 0") into reply

-- If last character is not a return, add one

If character 2 of reply is return then

Adobe PageMaker Software Development Kit 116

Writing Stand-Alone Plug-ins: Apple Events and DDE

put "textcursor +textblock;" into Txt Send
el se

put "textcursor +textblock;textenter " & quote & return & quote & ";"
i nto Txt Send

end if

-- Paste text and reposition text blocks

put "paste;select 1;resize bottonright" & BCd & ";" after TxtSend
put "placenext; place" && TLCoords & ";" after Txt Send

put "resize topleft" && TLCoords & ";" after Txt Send

put "resize bottonmright" && BRCoords & ";" after TxtSend

put sendQueryToPM Txt Send) into reply
end nouseUp

Text field

The utility has one text field that contains the following instructions for the
user:

To thread two text blocks, select the first text block and send it to the back.
Then, select the second block and click Thread.

Adobe PageMaker Software Development Kit 117

Writing Stand-Alone Plug-ins: Apple Events and DDE

Using DDE to communicate with PageMaker

You can communicate with PageMaker by sending DDE messages directly to
PageMaker from a stand-alone plug-in or from any application that supports
DDE commands.

You can also create a stand-alone plug-in that calls the routines contained in
the Windows 95 DDE Manager Library (DDEML). The examples in this chapter
illustrate both methods of using DDE to communicate with PageMaker.

Using DDE messages
PageMaker recognizes the first four DDE messages listed below and sends
the last two DDE messages:

WM_DDE_INITIATE: Use this message to begin a conversation. PageMaker
registers itself as “PageMaker.” It responds to
WM_DDE_INITIATE messages for “PageMaker” that use
any topic name (including NULL).

WM_DDE_
EXECUTE: Use this message to send commands. Results are processed
as text strings.

WM_DDE_

REQUEST: Use this message to send queries. Queries must use the
CF_TEXT format. (For more information, see SDK Guide for
Microsoft Windows and Windows NT.) Results are
processed as text strings.

WM_DDE_
TERMINATE: Use this message to end a conversation.

WM_DDE_DATA: PageMaker uses this message to transmit the result of the
query to the application that issued the
WM_DDE_REQUEST.

WM_DDE_ACK: PageMaker uses this message to acknowledge the receipt
of a command.

Sending commands and queries to PageMaker

As described above, you use WM_DDE_EXECUTE to send commands and
WM_DDE_REQUEST to send queries.

You should also follow these general guidelines when sending commands
and queries to PageMaker:

e Separate multiple commands or queries within the message by new line
characters or by semicolons (;) For example:

new, close
sel ect (5, 6)

e Send no more than one query per message. There can be only one text
reply from a DDE query. If you send more than one query per event, only
the result of the last query is returned in the reply.

Receiving replies from PageMaker

PageMaker uses WM_DDE_DATA to transmit the result of the query to the
application that issued the WM_DDE_REQUEST. A query reply is a null-
terminated character string. Items in a reply are separated by commas (,).

Adobe PageMaker Software Development Kit 118

Writing Stand-Alone Plug-ins: Apple Events and DDE

Example: Calling routines in DDE Manager Library

This example illustrates how to establish a callback routine, initiate a
conversation, send a command and a query, and end a conversation with
PageMaker by calling routines in the Windows 95 DDE Manager Library
(DDEML).

The callback routine for DDEML

To use DDEML, you must first write a callback function. MyDdeCallback is
registered on Ddelnitialize and called during various DDEML functions.
Remember to export this function in the .DEF file of your application.

static PFNCALLBACK | pCal | back; // Procedure instance for
/1 call back function.

HDDEDATA CALLBACK MyDdeCal | back(U NT type, U NT fmt, HCONV hconv, HSZ
hsz1,

HSZ hsz2, HDDEDATA hData, DWORD dwDat al, DWORD dwDat a2)

{

switch (type) {

default: // No need to handle

return 0; // any callback types.

}

}

Initiating a DDE conversation

StartPMConv initiates a DDE conversation with PageMaker and returns the
handle that you use to send commands or queries to PageMaker. Once you
initiate the conversation, you can send multiple commands and queries to
PageMaker.

HCONV St art PMConv(voi d)

{

DWORD dwi nst = 0; // Instance identifier for DDEM.

HSZ hszService; // String handl e for PageMaker service nane.

HCONV hconv; // Handl e to PageMaker DDE conversati on.

| pCal | back = // Make procedure instance

(PENCALLBACK) MakePr ocl nstance(// for the callback function.
(FARPRCC) MyDdeCal | back,

hl nst) ;

Ddelnitialize(&w nst, // Initialize the DDEM.
| pCal I back,

APPCLASS STANDARD | APPCMD CLI ENTONLY,

0);

hszService = // Make a string handle for the

DdeCr eat eStri ngHandl e(dw nst, // service nane.

“ PageMaker”, CP_W NANSI);

hconv = DdeConnect (dwi nst, // Establish a DDE conversation.

hszService, 0, 0);

Adobe PageMaker Software Development Kit 119

Writing Stand-Alone Plug-ins: Apple Events and DDE

DdeFreeStri ngHandl e(dwi nst, // Free the nmenory associated with

hszService); // the service nane.

return hconv;

}

Sending a command to PageMaker
The following routine sends a '\0’' terminated string command to PageMaker.
voi d SendPMComand(HCONV hconv, LPSTR | pCnd)

{

DWORD dwResul t; // DDE conversation status.

DdeC i ent Transaction(l pCrd, // Send the conmand string

Istrlien(lpCd) + 1, // to PageMaker. hconv, 0, CF_TEXT,

XTYP_EXECUTE, 1000,

&dwResul t) ;

}

Sending a query to PageMaker

The following routine sends a query string to PageMaker and displays the
results of the query in a Windows message box.

voi d SendPMuery(HCONV hconv, LPSTR | pQuery)

{

HDDEDATA hRepl yDat a;

HSZ hszQuery;

hszQuery = // Create a string handle

DdeCreat eStri ngHandl e(dwi nst, // for the query.
| pQuery, CP_W NANSI);

hRepl yData = // Send the conmand |ine argunent
DdeC i ent Transaction(0, // to PageMaker as a query.
0, hconv, hszQuery,

CF_TEXT, XTYP_REQUEST,

1000, &dwResult);

DdeFreeSt ri ngHandl e(dw nst, hszQuery);

if (hReplyData) {

DWORD dwRepl ySi ze;

LPSTR | pRepl y;

| pReply = // Get a pointer to the

DdeAccessDat a(hRepl yData, // reply handl e.
&dwRepl ySi ze) ;

MessageBox(0, | pReply, // Showit in a nessage “PM Query Result”, MB OK); //
di al og box.

DdeUnaccessDat a(hRepl yData); // Done with the data.
DdeFr eeDat aHandl e(hRepl yDat a) ;
} else {

MessageBox(0, “No reply from

Adobe PageMaker Software Development Kit 120

Writing Stand-Alone Plug-ins: Apple Events and DDE

PageMaker”, “Error”, MB_(K);

}
}

Ending the conversation

When the conversation is complete, call EndPMConv to terminate the DDE
conversation.

voi d EndPMConv(HCONV hconv)

{

DdeDi sconnect (hconv); // End conversati on.
DdeUninitialize(dwmnst); // Allow DDEM. to cl ean up.

Fr eeProcl nst ance((FARPROC) | pCal | back); // Free the procedure
}// instance for the

/1 call back function.

Example: Sending DDE messages

You can also communicate with PageMaker by sending DDE messages
directly to PageMaker from a stand-alone plug-in or from within another
application. This concept is illustrated by the following Visual Basic program.

This Visual Basic program creates a simple utility that threads (joins) the text
of two independent text blocks into one story and then replaces the second
text block in its original position. The utility form consists of a button, which
sends the commands and queries to select, join, and replace the text, and a
simple text window, where user instructions are displayed and replies from
PageMaker are sent.

To use this threading utility, you should have a publication open in
PageMaker with at least two stories on the page.

Declarations

Here are the "(general)" declarations for the utility:

REM Threading utility courtesy David Butler

REM Subroutine to keep utility on top

Decl are Sub Set WndowPos Lib "User" (ByVal hwhd As |nteger, ByVal

hwidl nsert After As Integer, ByVal X As Integer, ByVal Y As Integer, ByVal cx
As |Integer, ByVal cy As Integer, ByVal wHl ags As Integer)

Const HVWAD_TOPMOST = -1

Const HWND_NOTOPMOST = -2

Const SWP_NOACTI VATE = &H10

Const SWP_SHOWA NDOW = &H40
Subroutines
Here are the subroutines used by the utility:

Sub Form Load ()
REM Make w ndow stay on top of PageMaker
Set W ndowPos hwhd, HWND _TOPMOST, 0, 0, 0, 0, SWP_NOACTI VATE O SWP_SHOWN NDOW

REM Prevent utility fromtimng out if PageMaker is not running

Text 1. Li nkTi neout = -1

Adobe PageMaker Software Development Kit 121

Writing Stand-Alone Plug-ins: Apple Events and DDE

Text 1. Li nkTopi ¢ = "PageMaker | DDE_LI NK"

REM Put hel p nessage in text w ndow

Updat eSt at us
End Sub

Sub RunScri pt Conmand (PM Cnd As String)
Text 1. Li nkMbde = 2

REM Send either commands or query based on first 3 characters
REM You can group comuands, but mnust send queries one by one

REM Use Execute for commands, Request for queries

If Left$(LCase$(PM Cnd), 3) = "get" Then
Textl.Linkltem = PM Crd

Text 1. Li nkRequest

El se

Text 1. Li nkExecute PM Cmd

End I f

End Sub

Sub UpdateStatus ()
REM Define help text to appear in text w ndow

Msg$
back. "

"To thread two text bl ocks, select the first text block and send to

Msg$ = Msg$ + "Then, select the second bl ock and click Thread."
Text 1. Text = Msg$

End Sub

Text field

The utility has one text field with the MultiLine property set to True. The
LinkClose procedure contains the following code:

Sub Text1 Linkd ose ()

REM Let PageMaker finish before utility continues
REM Thi s procedure is inportant for nore conplex scripts

DoEvent s

End Sub

Command button

The utility has one command button with a caption of Thread. The
subroutine for the button follows. Be careful to follow the PageMaker

Adobe PageMaker Software Development Kit 122

Writing Stand-Alone Plug-ins: Apple Events and DDE

syntax correctly (for example, inserting a space between commands and
parameters).

The sample code below sends several commands at a time. If it becomes
necessary to troubleshoot a problem, you may want to send one command at
a time.

Sub Commandl _dick ()

REM Define a paragraph (carriage return) character

Cr$ = Chr$(34) + Chr$(13) + Chr$(10) + Chr$(34)

REM Cet coordi nates of selected text block

REM Use coordinates later to place text back on page
RunScri pt Conmand ("getobjectloc topleft")

TLCoor d$ = Text 1. Text

RunScri pt Conmand ("getobjectloc bottonright")
BRCoor d$ = Text 1. Text

REM Hi ghl i ght and cut text in second text block
REM Then select first text block

RunScri pt Command ("textedit; selectall;cut;select 1;")

REM Get bottom corner of first text block
RunScri pt Command ("getobjectloc bottonright")
BCd$ = Text 1. Text

REM Get | ast character of first text block

RunScri pt Conmand ("textedit;textcursor +textblock;textselect -char;")

REM | f last character is not a return, add one
RunScri pt Command ("getstorytext 0 0")
If Asc(M d$(Textl. Text, 2)) <> 13 Then

Msg$ = "textcursor +textblock;textenter " & Cr$ & ;"
El se

Msg$ = "textcursor +textblock;"
End If

REM Paste text and reposition text blocks

Msg$ = Msg$ + "paste;select 1;resize bottonright " + BCd$ + "
Msg$ = Msg$ + "placenext;place " + TLCoord$ + ";"

Msg$ = Msg$ + "resize topleft " + TLCoord$ + ;"

Msg$ = Msg$ + "resize bottonright " + BRCoord$ + "

RunScri pt Command (Msg$)

REM Put hel p nessage back in text w ndow

Updat eSt at us

End Sub

Adobe PageMaker Software Development Kit 123

Using Commands and Queries

The PageMaker command and query language consists of simple commands
and queries based on PageMaker menu commands or mouse actions.
This chapter describes how to use the command and query language to write

plug-ins. For information on specific commands and queries, see Chapters 9
and 10.

Adobe PageMaker Software Development Kit 124

Using Commands and Queries

Command and query language

In PageMaker’s command and query language, commands are one-word
equivalents of menu, keyboard, or mouse actions. For example, the
commands for File > Open, Edit > Paste, and Type > Set Width are Open,
Paste, and SetWidth, respectively.

Queries ask questions about the PageMaker publication and use the same
one-word approach that commands use. Queries always begin with “get,”
such as GetColumnGuides or GetCropRect.

Using commands and queries is the easiest part of writing a plug-in. Just
think through the logical sequence of the task you want to complete and
find the appropriate command or query in Chapters 9 and 10. For
commands, it's a good idea to do the steps using the PageMaker menus, and
then jot down the commands as you do them.

The command and query language is simpler than most programming or
macro languages. It includes no programming control structures (such as “if-
then-else” statements) or loops (such as “repeat-until” statements).

Text versus binary format: to parse or not to parse

Plug-ins can send commands and queries either as text or in the binary
format. (Internal scripts must always use text.) Because PageMaker does not
need to parse binary code, binary commands and queries require less
memory to process and execute faster than text commands and queries.

Query replies: if you want text, you gotta ask

Loadable plug-ins

For loadable plug-ins, the default format of query replies is the binary
format, regardless of the format of the query from the plug-in. You can
receive query replies as text only if you:

e Use the text format for the query, and

* Include the kXRFText flag in the abReplyData.rsStyle field of the
parameter block (e.g., flag = kRSHandle | kRFText—see “Sending queries
to PageMaker” in Chapter 3).

Binary queries, however, only return results in the binary format. If you
specify the text format for binary query returns, your specification will be
ignored. (Note that in cases where the actual return value is text—such as a
publication name, a font name, or story text—the return value of a binary
query is a null-terminated string.) For more information, see “Sending
queries to PageMaker” in Chapter 3.

Stand-alone plug-ins

For plug-ins communicating with PageMaker using Apple Events or Window
DDE messages, regardless of the format of the query, PageMaker returns the
results of the query as a null-terminated string. For replies that include
several values, PageMaker separates each value with a comma.

Binary format

Add PM_ to command and query names

When sending commands and queries in the binary format, add PM_ to the
command or query name.

Adobe PageMaker Software Development Kit 125

Using Commands and Queries

Even byte boundaries

Binary data must begin on even byte boundaries. With the exception of
string data, all fields are evenly sized, so this is generally not a problem.

String data

Strings are variable-length text runs (character arrays). Therefore, to
designate the end of the field, string values must be null-terminated. To
start the field following a string on an even boundary, the pointer may need
to skip a byte.

Routines to put and get data (loadable plug-ins)

To facilitate putting data in and retrieving data from the appropriate
addresses, we recommend that you use a routine that automatically
increments the pointer, adjusting the address as needed for string data to
ensure that the pointer lands on an even byte. The sample routines below
demonstrate one approach. The SDK includes macros to perform these
functions as well. See Chapter 5, “Macros” for more information.

These routines copy data to the appropriate buffer and increment the
pointer accordingly. The put routines need a pointer to the buffer pointer
and the value (the text-buffer address in the case of string values). The get
routines need a pointer to the buffer pointer and a pointer to the
destination (the text-buffer address in the case of string values).

It is important that you use the correct macro for each command or query
you send. For example, if you are using the binary format and the query
requires parameters, you use PBBinQueryWithParms, not PBBinQuery. In the
same way, if a command has several parameters, you use PBBinCommand,
but if it has only one short parameter, you use PBBinByShortValue.

voi d CQPUTSHORT(short **, short);
voi d CQPUTSTRI NE char **, char *);
voi d CQGETSHORT(short *, short **);
voi d CQGETSTRI NG char **, char **);
voi d Test Put (LPPARAMBLCOCK) ;
voi d CQPUTSHORT(dest, src)
short **dest;
short src;
{
**dest = src; [/* copy the value */
(*dest)++; /* increnent the pointer */
}
voi d CQPUTSTRI NE dest, src)
char **dest;
char *src;
{
char *dstptr = *dest;
unsi gned |l ong addr;
whil e(*src) *dstptr++ = *src++;
*dstptr++ = "\ 0';
addr = (unsigned long) dstptr;
if (addr & 1L) dstptr++; /* pad if odd boundary */

*dest = dstptr;

Adobe PageMaker Software Development Kit 126

Using Commands and Queries

}

voi d CQGETSHORT(dest, src)

short *dest, **src;

{
*dest = **src; [/* copy the value */
(*src)++;, [/* inc the pointer */

}

voi d CQGETSTRI NG dest, src)

char **dest, **src;

{
char *srcptr = *src
unsi gned |l ong addr
*dest = *src; /* get string address set up */
whil e(*srcptr) srcptr++;, /* skip past the string */
srcptr++;, [* skip null */
addr = (unsigned | ong) srcptr;
if (addr & 1L) srcptr++; /* skip pad if odd boundary */
*src = srcptr;
}
voi d Test Put (LPPARAMBLOCK | pPar anBl k)
{
A R sanpl e usage ----------- */

[**** Addi ng publications to the book |ist*****/
short renunmOption = 3; /* next even */

short nunof Pub = 3; /* nunber of publications */
char psnanmebuf[20]; /* publication filenames */
char ConmandPacket [100];

char *pPacket = ConmmandPacket ;

char *pBook;

RC rc;

short j;

HANDLE hpx;

/* sone variabl e pPacket is a pointer to our output buffer */
CQPUTSHORT(&pPacket, renumOption); /* put copies into the buffer */
CQPUTSHORT(&pPacket , nunof Pub); /* put firstpage into the buffer */

/* put in publication names */
strcpy (psnanebuf, "HardDi sk:Pub 1");
CQPUTSTRI N& &pPacket , psnanebuf); /* put the filename string */
strcpy (psnanebuf, "HardDi sk: Pub 11");
CQPUTSTRI NG &pPacket , psnanebuf); /* put the filenane string */
strcpy (psnanebuf, "HardbDi sk:Pub 111");
CQPUTSTRI N& &pPacket , psnanebuf); /* put the filenanme string */

/* send out the conmmand */

rc = PBBi nCommand(| pParanmBl k, pm book, kRSPoi nter, CommandPacket,

Adobe PageMaker Software Development Kit

127

Using Commands and Queries

st rl en(CommandPacket)) ;
pPacket = ComrmandPacket ;
for (j=0; j < sizeof(CommandPacket); j++)
*pPacket ++ = 0;
pBook = ConmandPacket ;
rc = PBBi nQuery(Il pParanBl k, pm get book, kRSHandle, 0, 0);
if (hpx = PBCGet Repl yDat a(l pParanBl k)) {

i f (pPacket = MMLock(hpx)) {
CQGETSHORT(& enunmOpt i on, &pPacket) ;
CQGETSHORT(&nunof Pub, &pPacket) ;
for (j=0; j < nunofPub; j++)

CQGETSTRI N& &pBook, &pPacket) ;

MMUnlock(hpx);

}
MMFree(hpx);

64K query return limit for Windows

The return from a query is limited to 64K. You can work around the 64K
limit if your plug-ins requests a handle to the query results and then
processes the text with a HUGE pointer.

Optional parameters not optional

When sending a binary packet, all parameters are required, so you should
disregard the optional brackets in the command and query descriptions in
Chapters 9 and 10.

Deleting reply buffers

PageMaker always allocates a handle for reply results. If the query fails,
PageMaker cannot delete the handle it allocated because it can no longer
distinguish that handle from any handle you might have allocated. To ensure
that the reply buffer is deleted whenever it's appropriate, we recommend
that you send queries using the following method:

rcVal = PBBi nQuer yW t hPar ns(| pPar anBl k, pm get st or yt ext , kRSPoi nt er,
ar Par ns, si zeof (arParns), kRSHandl e, NULL, MAX REPLY_SI ZE) ;
myHandl e = PBGet Repl yDat a(| pPar anBl k) ;

if (!rcval && nyHandle) {

Cat Handl e(&, “Success:[");

Cat Handl e(&, MVLock(nmyHandl e));

MMUNnI ock(myHandl e) ;

I sprintf(buff, “]\n");

Cat Handl e(&h, buff);

} else {

I sprintf(buff, “Failed:%\n",rcVal);

Cat Handl e(&h, buff);

}
i f (nyHandl e) MVFree(nyHandl e);

Adobe PageMaker Software Development Kit 128

Using Commands and Queries

Commands, queries, and parameters

To duplicate dialog box options or mouse actions, many commands and a
few queries include parameters. (Dialog boxes are suppressed when you use
commands.) Parameters correspond directly to the options in the related
dialog box or to page locations or object handles normally specified by
dragging and clicking the mouse. For example:

removepages 3 5

Hlam

Aemauc peges...

In this example, RemovePages corresponds to the Layout > Remove Pages
menu command. The first parameter (3) corresponds to the first page in the
range of pages to be removed, and the second parameter (5) corresponds to
the last page in the range of pages to be removed. The parameters are
identical to the dialog box options shown below:

Mrm1sn II

D=y 1 |

o, T

The parameters 3 and 5 in the previous example work just like the options in
this dialog box.

Multiple commands for single menu commands

To keep the number of parameters to a manageable level, menu commands
that open complex dialog boxes may be represented by several commands.
For example, four script-language commands represent the File > Document
Setup menu command:

e PageMargins
e PageNumbers
e PageOptions

e PageSize

The command you use depends on which options you want.

Command and query syntax

The order in which you specify parameter values for a command or query is
listed on the top line of the description with the command or query name.
You must specify parameter values in this order for PageMaker to correctly
interpret the command.

Commands, defaults, and preferences

Be aware of the possible conditions, preferences, and default settings in a
publication and on the computer, such as:

e Installed fonts, filters, and plug-ins
e Whether or not an object is selected

e Whether or not a publication is open

Adobe PageMaker Software Development Kit 129

Using Commands and Queries

Otherwise, under certain circumstances, your plug-in may not run correctly
or may yield undesirable results.

As when using the menus or mouse, the effect of a command or the values a
query returns depends on the current state of PageMaker and the
publication. Here are the effects of commands in each state:

No publication is open

If no publication is open, many commands set PageMaker default values for
new publications, and many queries return the PageMaker default settings.
The default settings in existing publications are not affected.

Publication is open and no object is selected

If a publication is open and nothing is selected (neither text blocks nor
graphics), many commands set the publication defaults and many queries
return the publication defaults.

Publication is open and an object (text block or graphic) is selected

If a publication is open and objects are selected with the Select command or
pointer tool, object-specific commands and queries apply to those selected
objects.

Publication is open and text is highlighted with the text tool

If a publication is open and text is selected with the text tool, text-specific
commands and queries apply only to those selected sections of the text;
paragraph-specific commands and queries apply to all the paragraphs
containing the selected text.

Publication is open and the insertion point is within a text block

If a publication is open and the insertion point is within a text block, text-
specific commands and queries apply only to the next characters inserted;
paragraph-specific commands and queries apply to the paragraph containing
the cursor.

Deciphering PageMaker’s replies to queries

PageMaker returns information from a query as a string of numbers or
words separated by commas. To decipher the reply, match the values that
PageMaker returns with the table listing reply values in the query
description in Chapter 10. For example, let’s say PageMaker returns these
values to the GetRuleAbove query:

1,1,"Blue-green",1,0,0,0,0

You simply match each value with its corresponding reply value listed in the
description of GetRuleAbove.

Adobe PageMaker Software Development Kit 130

Using Commands and Queries

Command and query language rules (text format only)

When you send a command or query, PageMaker checks each statement to
see if the statement meets the requirements of the language. This section
describes the basic rules you must follow when using the text format for
commands and queries.

1

or

or

or

or

or

not

Type each command or query as one word.

'’

For example, type “lockguides,’
not “get link info.”

not “lock guides;” type “getlinkinfo,”

Use a semicolon or a carriage return to separate the command or query
and its parameters from the next command or query. The semicolon and
carriage return also mark the end of a comment (see rule 7 below).

For example, both of the following examples are acceptable:

sel ectal |

del et e

selectall; delete

Use commas, spaces, tabs, or parentheses () to separate parameters
from one another.

All of the following examples are acceptable:

resize righttop, 3.5, 7i, 1,1

resize righttop 3.5i 7i 11

resize righttop (3.5, 7i) (1, 1)
Use the correct syntax.

Parameter values must always follow the command or query in the order
specified in this SDK.

Don’t worry about case when entering commands, queries, and
parameter keywords. They can all contain lowercase and capital letters.

All the following examples are acceptable:

Manual Ker ni ng Apart Fi ne

manual ker ni ng apartfine

MANUALKERNI NG Apartfine

Always match the case, as well as spelling and punctuation, of
submenu, pop-up menu, and palette options, such as fonts, colors,
master pages, dictionaries, and styles. These parameters appear in
quotation marks.

You must capitalize, spell, and punctuate the option name exactly as it
appears on-screen.

Only the first example is acceptable:

Font “Hel veti caNeue Condensed”

Adobe PageMaker Software Development Kit 131

or

or

Using Commands and Queries

Font “hel veti caneue condensed”

Precede all comments with a double hyphen (--). Comments may be
either on a line by themselves or on the same line as a command or

query.

The double hyphens designate the beginning of a comment; a semicolon
or carriage return designate the end of the comment. The following are
all correct examples of comments:

new 5 --Creates a new, 5 page publication

box (2,2) (5,5) --Draws a 3" square box
new5 --Creates a new, 5 page pub;box (2,2) (5,5) --Draws a 3" box

--The followi ng creates a new, 5-page publication and draws a 3" box
new 5

box (2,2) (5,5)

Remember: Never include a semicolon as part of your comments, even
within quotation marks. If you do, PageMaker will assume the semicolon
marks the end of the comment and will try to interpret the remainder of the
comment as a command.

Adobe PageMaker Software Development Kit 132

Using Commands and Queries

Specifying the measurement system

Several commands and queries use measurements or ruler coordinates as
parameters.

Binary format uses twips

When using the binary format, you cannot specify the measurement system
you want to use or receive for measurements or coordinates. All
measurements must be in twips, PageMaker’s internal measurement system,
regardless of the default measurement system in a publication. PageMaker
also returns binary query data in twips.

Note: A twip is 1720 of a PostScript point or 1/1440 of an inch. 240 twips
equal 12 points (or 1 pica).

Text format

When using the text format, unless you specify another system, PageMaker
uses the default measurement system (set in the Preferences dialog box)
when interpreting the parameter values you specify or when returning query
results.

Fﬂnlll..- vk I'reIFrHIN B
e rmen e e - [cancal
.m M2asuramant sy+kcm: |FI-: LH| ’
: Her ool rnler: |I'||:|n | |:| i I MhAr... .

e peth - trahr ——— e Rt

™ s ITTTLT P TTT TR '_-_'llrlllj unl

L Show “kacps” vlolstlant ' Hormel

- v_tHigh ra+aluilan

P Irnnl MR

L st Hurrsnnlal mnlye: m | ||1|:|'||:1.|

o <xlks

Ler lical madye: L.l Inrhas
& Fastar u [Inchay |
< imellcr L Usa “4nap bo' canstreini+

The command and query language lets you either:

e Specify a system for an individual parameter, leaving the publication’s
default measurement system intact. This technique is useful if you don’t
know (or don’t want to alter) the publication measurement system.

e Specify a new default measurement system for the publication (or, if no
publications are open, for all future publications). This technique is
useful if you want to use a particular measurement system for all
commands and queries.

Specifying the measurement system for individual parameters

To override the default measurement system for a parameter, include a
measurement abbreviation (from the table below) with the measurement or
coordinate value. For example, “7i"” in the command “move bottom, 7i”
specifies a location 7 inches from the vertical ruler’s zero point regardless of
the default measurement system.

For example, if the publication measurement system is picas, PageMaker
assumes the “7"” in the following command means 7 picas:

nove bottom 7

To specify inches instead of picas, add the inches abbreviation (listed in the
following table) to the parameter:

nove bottom 7i

Adobe PageMaker Software Development Kit 133

Using Commands and Queries

The following table lists the measurement abbreviations you can use to

override the default measurement system:

System Abbreviation Example
Inches i after 5.625i
Millimeters m after 25m

Picas p after 18p
Points p before p6

Picas and points p between 18p6
Ciceros c after number 5¢

Note: Do not insert a space between the measurement and the

abbreviation.

Changing the default measurement system

To change the measurement system for the publication, use the
MeasureUnits command. The new measurement system becomes the default
and remains in effect after the plug-in has run. PageMaker uses the default
measurement system when interpreting measurements and coordinates in
commands (unless overridden with a measurement abbreviation) and when
returning measurements and coordinates from queries.

(For more information about MeasureUnits, see Chapter 9, “PageMaker

commands.”)

Adobe PageMaker Software Development Kit

134

Using Commands and Queries

Setting the zero point and specifying coordinates

For some commands and queries, you must use coordinates to specify
locations on the page. When using the binary format, you specify
coordinates in twips. When using the text format, you can specify
coordinates either:

e Using numeric values (specified relative to the rulers’ zero point), for
example:

nove bottom 7i

e In terms of page elements, such as columns, guides, and objects (more
on these later in this section), for example:

nove bottom col um bottom

Whether using the binary or text format, numeric coordinates are specified
relative to the ruler’s zero point.

Setting the ruler’s zero point

The default position of the zero point is at the upper-left corner of single
pages and the upper-touching corners of two-page spreads, as shown in the
following illustration:

Single page Fadng pages

The zero point is moveable and is often not in its default position. It's a
good idea to explicitly set the zero point location to ensure that PageMaker
places objects and guides where you want them, and to ensure that you
understand the locations returned in query results. To position the zero
point, use the ZeroPoint or ZeroPointReset command.

Using numeric coordinates

Numeric coordinates represent locations in relation to the PageMaker rulers.
Coordinate values can be either negative or positive numbers, depending on
the location of the rulers’ zero point. However, unlike standard coordinates,
PageMaker uses positive numbers to express locations down from the zero
point. Locations above the zero point are expressed as negative numbers.

b ————— — %
e Zrz mrid
ary

=& — | === 572

Adobe PageMaker Software Development Kit 135

Using Commands and Queries

The following examples specify parameters using the numeric method:

Precise coordinate | Action

move top, 6i Positions the selected object so its top edge is 6 inches below the zero
point.

guidevert 4.25i Creates a vertical ruler guide 4.25 inches to the right of the zero point.

deletevert 4.25i Deletes the vertical guide that is located 4.25 inches to the right of the
zero point.

Vertical coordinates do not use separate measurement system

Although PageMaker lets you specify a separate measurement system for the
vertical ruler, all coordinates and measurements use the measurement
system set in the Measurements In option (or with the cMeasurement
parameter of the MeasureUnits command). For example, even if the vertical
ruler is set to inches, PageMaker interprets any vertical coordinates or
measurements using the default measurement system (which may not be
inches). As mentioned previously, you can override the default system by
including the abbreviation for the desired system with the value.

Specifying locations by page elements (text format only)

If you use the text format, you can specify locations in relation to elements
on the page, rather than by precise numeric coordinates. The advantage of
using page elements is that the locations remain valid even if you move the
rulers’ zero point, move an object, or change the publication page size or
orientation.

To use this method, you refer to a column guide or object by the internal
number PageMaker assigns it when it is first placed, typed, or drawn on the

page.

e Columns are numbered from left to right on the specified page. You
specify “leftpage” or “rightpage” (as shown in the table below) only
when the publication has facing pages.

e Guides are numbered in the order in which they were placed on the
page, regardless of their positions on the page. The first guide drawn is
number one. If you delete a guide, PageMaker renumbers the remaining
guides.

e Objects (text blocks and graphics) are numbered in the order in which
they were first typed or drawn, regardless of position. The first object
placed on the page is number one. Using the BringToFront,
BringForward, SendBackward, or SendToBack commands changes its
drawing order. If you delete an object, PageMaker renumbers the
remaining objects.

The following table shows how to specify coordinates relative to columns,
guides, and objects:

Location x-coordinates y-coordinates

Columns column n left column top

column n right column bottom
rightpage column n left
leftpage column n left
rightpage column n right
leftpage column n right

Guides guide n guide n

Objects last left last top
last right last bottom

Adobe PageMaker Software Development Kit 136

Note:

" n

d n

number.

Using Commands and Queries

in the column and guide references represents the column or guide

e “last” in the object descriptions refers to the edge of the last drawn
object (the object with the highest drawing order).

e |f you do not specify a location, PageMaker uses the right page by

default.

Here are some examples of command parameter coordinates specified using

page elements:

Command

Action

move left, guide 1

Positions the left edge of the selected object on the first guide drawn
on the page.

deletevert guide 3

Deletes the third vertical ruler guide placed on the page (regardless of
its location).

select (rightpage
column 2 left, guide 2)

Selects the object that is on the right page, where the left side of the
second column meets with second horizontal guide placed on the page.

Adobe PageMaker Software Development Kit 137

Using the command an

Using Commands and Queries

d query reference

This section explains the content of the command and query descriptions in
Chapters 9 and 10, and describes the conventions used in the command and

query language and throughout

the rest of this SDK.

Anatomy of the command and query descriptions

The commands are described in detail in Chapter 9; query descriptions are in
Chapter 10. The illustration below shows an example of a command
description and identifies the content:

Cippiowal paramatans S0 i dvadials
Raaghig parannaars S aihar i ;
o bvaskas i optionad, fodaead hy afpzas

Ciovraianed e S PErEEaars —

e rasporle s corninan’ |
Crytiwes !yt e dowiinvosinel! L Siatars —

Farmialar igpas, dasiaimions, ol

I 1
— Tabs nCount] and, oF ccidion, sLaderl..

.|: . : :: :: 1

Spudfixe ha nuonbar of b cdepr and Ak b lnd, the ok Forn tha Lo i
sia of i dmect Bled, and w lesdar charsectars (ifanyg) for

TIFE FARANETER WALUES TO EMTER

[oheor nCcunt Pk of fak o dops
O frarch o daar wrardvtirad Ak and raatrdar
o dabultrating ofons b awry 0.5 ind or
e C0rarnin ntanationd varione)

Far audh b sdep dnCountnataqual 4o rarch:

H hnd bt or i {rarzh
of srcomatia pales cardar o 1
righta
dutirnalar T
leng o e HE: b Fran [aftide of tacck bl ok
|_»¥rirg sl dar Lasdar charscbarn in quatdion mark o racd-
F-h’aﬁ-ﬂa’p’&'it‘ MEW ﬂa!}lpe 1 roourn =F 2 doarasary sy ringh dharsstar i aue-
roaticully doaklad)
ﬁflm’d&:ﬁﬁbﬂlﬂ} 1" farnpdy quatadion marks) for ne ladar
[Cafir faks kit o right Spadd tha kb poition Fom lafe e right ez as
et paga. B b poeiden: are cutofordar Fagaabar ratum: an wra,
Frachfirad b Tha hdantMak: rubre has dafuul bk tding: ey 0.5
incha o 3 picw (marked Bporaadl wisnglect The b pocitione pou spadfy
raplass any prad s dined satting: Batveen e it gin and sheom poidon:.,

Uzar-chfirmd abs charsd Tha Takr canmand rarecs s sny sxa4ng ke
Ewfore spplying e nawe onae Te daar all war-dadined tub and raotum ha
ruar o s daBultrating of ons b ey 0.5 indhae or 3 picss (0o in
inmmadonslwardon:d, usda s for tha nCountpar st fa.g. ks 0

exmmph. Tha fellowing wxarnpls oanm: thras ke 4 fint o ot b

offeat 025 indws fran he wectbled: tha second, o lafttab ofEat 05 irchar

rorn tha tectblods and tha third, o dearmd b vadh lasdar ot o+ B
| inch dran e wet Hedi,

Sk Wizt

v Thi GatTabo quury
v Mok Fugaakar B0 HApE - Command: = Typs = dans Make

Adobe PageMaker Software Development Kit 138

Parameter types

Using Commands and Queries

Just as a dialog box may include several types of options (pop-up menu,
entry box, check boxes, radio buttons), the command and query language
also requires different types of parameters:

e Numeric values

e Coordinates

e Filenames

e Submenu, pop-up menu, or palette choices

e Text

In the command and query descriptions in Chapters 9 and 10, each
parameter name includes a lowercase prefix. The prefix indicates the type of
value you can use or that PageMaker will return. The remainder of the name
identifies the dialog box option, mouse action, object handle, and so forth,
to which the parameter relates. The following table defines each parameter
prefix and notes acceptable values:

Prefix

Data type

Description

b

boolean

Values are: true, on, 1 or false, off , 0. (In the binary
format, use only 1 or 0.) Boolean parameters represent
check boxes and options that you can turn on and off
(such as the display of rulers, guides, or palettes). For
example:

rulers on

choice

i nestyl e thindash
or
linestyle 13

Note: Do not enclose keywords in quotation marks.

decimal

Values are decimal numbers, generally accepted to one
decimal point (for example, 6.2). In the binary format, you
specify the value in the units of precision (in tenths of a
percent or thousandths of a degree, for example). Decimal
values specify point size, leading, page size, and so forth.
For example:

size 13.5

filename

Values are a filename. In the text format, the filename
must appear in quotation marks. In the binary format, the
parameter is a null-terminated string. For the best results,
include the full path with the filename. Filenames are used
with commands that refer to a file (such as, place, relink,
or open). For example:

relink "MDi sk: Newsl etter: Art: Chart. eps”

or

relink "c:\Newsltr\Art\Chart.eps"

Note: For dual-platform plug-ins: When referencing
filenames, avoid upper-ASCll characters (character number
128 and up) . Although the first 128 characters are
identical in the character sets used by Windows and the
Macintosh, the upper-ASCll characters are not. This can
cause a problem if the character on one platform maps to
a character that is illegal for filenames on another.

Adobe PageMaker Software Development Kit 139

Using Commands and Queries

Prefix

Data type

Description

n

number

Values are integers. Integers are used for page numbers,
columns, new pages, and so forth. For example:

new 5

string

Values are text. In the text format, the text must be in
quotation marks (for example, “Blue-green”). In the binary
format, the parameter is a null-terminated string. String
parameters are used for entering text, page-number
prefixes, and variable palette and submenu options, such
as fonts, dictionaries, export filters, plug-ins, master pages,
styles, and colors. For example:

font "Zapf D ngbats”

Where the string represents a variable palette, pop-up, or
submenu option, you must capitalize, spell, and punctuate
the option name exactly as it appears on-screen.

Note: To include a quotation mark within the text, precede
the quotation mark with a backslash, such as “\"Scripting
is fun!\" said the script writer.” The quotation mark is the
only character that requires special treatment.

Note: For dual-platform plug-ins: While you can enclose
strings in either typographer’s (curly) or straight quotation
marks, we recommend that you use straight quotation
marks if your plug-in is to be dual-platform.

x-coordinate
y-coordinate

Values are coordinates. In the text format, you canspecify
coordinates as either numeric locations (or offsets) or in
reference to a guide, column edge, or the edge of the last
object drawn. In the binary format, you specify numeric
coordinates only, and only in twips. Coordinates identify a
location on the page, an offset, or a relative position. (For
details, “Setting the zero point and specifying
coordinates” earlier in this chapter.) For example:

nmove lefttop 2p5 3p5

or

nmove lefttop (rightpage colum 2 |eft,
col um top)

Note: For numeric coordinates: You generally specify
numeric coordinates relative to the zero point. To ensure
you know the location of the zero point, set it with either
the ZeroPoint or ZeroPointReset commands. In the binary
format, you specify numeric coordinates in twips. In the
text format, you specify the coordinates using the current
measurement system or by including the appropriate
measurement identifier with the coordinate (such as, 3p6
for 3 picas, 6 points). See “Specifying the measurement
system” earlier in this chapter.

Adobe PageMaker Software Development Kit 140

	Contents
	1 PageMaker Plug-Ins Overview
	What is a plug-in?
	What can plug-ins do?
	What plug-ins can’t do
	Who will use plug-ins?

	What you need to develop a plug-in
	Macintosh developers need
	Windows developers need
	Documentation, testing, distributing, and supporti...

	How do plug-ins interact with PageMaker?
	How complex is the PageMaker plug-ins mechanism?
	No knowledge of the PageMaker internals needed
	PageMaker-based commands
	PC or Mac: The language is the same

	Command and query language
	Two formats: text and binary
	Parameters
	Coordinates
	Multiple commands but single queries

	Types of plug-ins
	Loadable plug-ins
	Menu plug-ins
	Function Libraries

	Stand-alone plug-ins
	DDE
	Macintosh System 7 Apple Events

	Where to go next

	2 Writing Loadable Plug-Ins
	Structure of a plug-in
	Windows DLL
	Macintosh shared library
	Flow of control
	Data flow

	How PageMaker recognizes a plug-in
	Macintosh
	Windows

	Registration
	PC: Creating the registration resource
	Macintosh: Creating the registration resource with...
	To use this template

	Macintosh: Assigning resource type

	Single entry point: main
	Pascal calling convention

	General guidelines
	Dialog boxes or windows
	Error and status codes
	Errors from PageMaker while executing commands and...
	Returning errors to PageMaker

	Global variables
	Memory management
	Binary versus text format for commands and queries...
	Palettes and windows
	How a user can maximize memory
	Cleanup
	Adobe Memory Manager

	Writing portable plug-ins
	Portable code
	Motorola and Intel processor differences

	Macintosh development specifics
	FAT binary: One executable, two platforms
	Macintosh initialization calls
	Do not use the C routine atexit()
	Debugging
	Editing the ‘vers’ resource

	Windows development specifics
	Microsoft Windows restrictions
	PC module-definition file
	Project files

	Sample plug-in routine

	3 Required Routines for Loadable Plug-Ins
	Data flow
	Allocated by PageMaker
	Parameter block structure
	Type definition for the parameter block

	Inline macros
	Loading
	Invoking
	Unloading
	Cleaning up
	Shutting down
	Sending commands to PageMaker
	Sending queries to PageMaker

	4 Memory-Manager Routines for Loadable Plug-Ins
	Why use these routines?
	Where to find the routines
	Adobe Memory-Manager routines
	MMAlloc
	MMFree
	MMGetPointer
	MMLock
	MMResizeHandle
	MMUnlock

	5 Macros
	Macro locations
	Finding descriptions

	LPGetHandle
	LPGetLong
	short LPGetShort(&v,pSrc)
	LPGetString
	LPPutHandle
	LPPutLong
	LPPutShort
	LPPutString
	PBBinCommand
	PBBinCommandByShortValue
	PBBinCommandByLongValue
	PBBinQuery
	PBBinQueryWithParms
	PBClearReplyBlock
	PBClearRequestBlock
	PBGetPluginData
	PBGetID
	PBGetOpCode
	PBGetReplyData
	PBSetErrMessage
	PBSetPluginData
	PBSetOpCode
	PBSetReplyBlock
	PBSetReplyUnits
	PBSetRequestBlock
	PBSetRequestUnits
	PBTextCommand
	PBTextQuery

	6 User Interface Design Guidelines
	General development tips
	Simplify the plug-ins menu
	Create consistent icons
	Follow existing standards and usage

	Designing dialog boxes
	Common dialog boxes
	PageMaker dialog box guidelines
	About pixels

	Creating and placing buttons
	Radio buttons, check boxes, and edit boxes
	Option placement guidelines
	Error messages and alerts
	Guidelines for making your product easy to localiz...
	Localizing Windows plug-ins
	Organizing your resources
	Content of resources
	Providing for translated text
	Special considerations

	7 Writing Stand-Alone Plug-ins: Apple Events and D...
	About stand-alone plug-ins
	Using Apple Events to communicate with PageMaker
	Addressing events to PageMaker
	Required constants
	Sample code

	Do script and Evaluate Expression Apple Events
	Description
	Sending commands and queries
	PageMaker’s reply to a query

	HyperCard or SuperCard example
	Stack or project script
	Button
	Text field

	Using DDE to communicate with PageMaker
	Using DDE messages
	Sending commands and queries to PageMaker
	Receiving replies from PageMaker
	Example: Calling routines in DDE Manager Library
	The callback routine for DDEML
	Initiating a DDE conversation
	Sending a command to PageMaker
	Sending a query to PageMaker
	Ending the conversation

	Example: Sending DDE messages
	Declarations
	Subroutines
	Text field
	Command button

	8 Using Commands and Queries
	Command and query language
	Text versus binary format: to parse or not to pars...
	Query replies: if you want text, you gotta ask
	Loadable plug-ins
	Stand-alone plug-ins

	Binary format
	Add PM_ to command and query names
	Even byte boundaries
	String data
	Routines to put and get data (loadable plug-ins)

	64K query return limit for Windows
	Optional parameters not optional
	Deleting reply buffers

	Commands, queries, and parameters
	Multiple commands for single menu commands
	Command and query syntax
	Commands, defaults, and preferences
	No publication is open
	Publication is open and no object is selected
	Publication is open and an object (text block or g...
	Publication is open and text is highlighted with t...
	Publication is open and the insertion point is wit...

	Deciphering PageMaker’s replies to queries

	Command and query language rules (text format only...
	Specifying the measurement system
	Binary format uses twips
	Text format
	Specifying the measurement system for individual p...
	Changing the default measurement system

	Setting the zero point and specifying coordinates
	Setting the ruler’s zero point
	Using numeric coordinates
	Vertical coordinates do not use separate measureme...

	Specifying locations by page elements (text format...

	Using the command and query reference
	Anatomy of the command and query descriptions

	Parameter types

